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1. INTRODUCTION

The Flight Dynamics Directorate at Wright Laboratory (WL/FIBGC) has long had
an interest in the dynamic and control aspects of large space structures [1, 2, 3].
In 1985, the Large Space Structures Technology Program (LSSTP) was initiated.
One of the goals of this program has been to develop a laboratory in which structures
dynamically similar to future LSS can be studied. The 12-meter truss described here is
part of this effort, involving both active and passive methods of vibration control. WL
has developed the design and model of the structure and the : -*up of the experiment.
The Ohio State University, Control Research Laboratory researchers have designed
the active controllers, implemented the software for control, and performed the closed-
loop testing.

1.1 Overview

The present report summarizes the total effort in this project, including the theory,
design, simulation studies, and implementation results of active vibration control of
a 12 meter cantilevered truss structure.

1.2 Large Flexible Structures

There are typically three areas which compose Large Space Structure (LSS) control:

¢ Vibration damping
¢ Pointing (slewing)

e Static shape deformation adjustment

Each of the above requires effort in modeling, control design, actuation and sensor
development, and resolution of practical application details.

The present effort addresses the first area-that of vibration damping.
1.2.1 Background and Related Work: Theoretical
Many approaches have been advocated from the theoretical viewpoint for vibration

suppression in flexible structures. Most LSS control schemes for vibration damping
share in the goals for robustness and reduced-order models. During the last ten years,

1




a number of approaches have been suggested and have been tested to some extent.
Among the early techniques one can list:

e Basic colocated velocity feedback
e HAC/LAC
e Positivity based feedback

e Independent Modal Control

More recently, other (mostly state-space based) techniques have also been analyzed.
The following should be highlighted:

e MEOP
LQG/LTR

Variable Structure (sliding-mode control)

Various Adaptive Control Approaches

e H.,-based techniques

Decentralized versions of the above, developed using different techniques

The approaches which have been truly developed to some extent for real systems are
a small subset of the above. In the present research we only had an opportunity to
consider some of these avenues.

The first issue one has to face in designing controllers for flexible structures is that
of modeling and model reduction. In fact, in a number of approaches, modeling and
model reduction are coupled into the controller design.

In general, a Finite Element Model (FEM) is developed, tested, and provided to the
control designer. At this point, one can simply truncate the dynamics associated with
higher frequencies. For beam-like structures, this may be a valid approach because
various criteria based on control authority, energy content, etc., indicate retention of
the mode ordering sequence. For more complex structures, however, one will have
to utilize an approach based on balanced reduction or some “cost” comparison-based
scheme. When considering decentralized control we used an approach that our Group
has utilized previously at JPL, decentralized balanced realization.

Two other approaches were also evaluated: Maximum Entropy/Optimal Projection
(MEOP) and an H,,-based method using the GAP Metric. In both of these cases,




model reduction and modeling errors are part of the controller design. Modeli..g
errors and effects of “discarded” modes are also considered to an extent by frequency
shaping, which was used with decentralized control.

Although many feedback controllers can be designed for decentralized systems, so
far the most popular has been based on Linear Quadratic cost criteria. Here we
also have considered decentralized Linear Quadratic control and utilized a locally
developed software package named DOLORES. One aspect considered in this context
was frequency weighting.

Early versions of frequency weighting may be attributed to the High Authority Con-
troller/ Low Authority Controller approach introduced by Aubrun [4] and covered in
some detail in the ACOSS Three (Phase I) Final Report. As analyzed there, Low-
Authority Controls provide limited (broadband) modal damping and may be synthe-
sized using perturbation techniques. It has been shown that for systems restricted to
colocated rate sensing and decentralized feedback loops, stability is guaranteed over
the system bandwidth. High-Authority Control provides arbitrary damping ratios
in low frequency modes by exploiting knowledge of system dynamics and is gener-
ally synthesized as a multi-input, multi-output (centralized) control. The spillover
phenomena in the HAC is handled by utilizing frequency shaping techniques such as
presented in {5]. We have reported preliminary results in designing the High Author-
ity Controller also assuming decentralized implementation in [6] where a decentralized
quadratic regulator with frequency weighting was analyzed. As covered by the soft-
ware package DOLORES, various options can be analyzed and one can be selected
for implementation. Another of our decentralized control efforts is based on the over-
lapping decomposition approach-a very promising idea which has only recently been
developed. Overlapping decompositions were first utilized by Ikeda, Siljak, and co-
workers (7, 8, 9, 10]. Ozginer and his students {11] and Young [12, 13] have extended
the approach further for decentralized controller design.

In general, decentralized control implies that each control channel is assigned the task
of regulation of a portion of the state space. In the context of flexible structures, each
controller used in active vibration damping is associated with a subset of vibrational
modes. This type of decomposition can be performed in an overlapping manner so
that some portion of the state space is assigned to more than one channel [14], or
similarly, one set of modes is assigned to more than one controller.

Once the local models are obtained through the expansion of overlapping decomposi-
tions, feedback controllers are designed separately. This leads to uncoupled feedback
controllers in the expanded state-space, which are then “contracted” to the original
state-space for implementation.

Further details of the above mentioned approaches may be found in the Chapter 2 of
this report.




1.2.2 Background and Related Work: Experimental

Experimental studies on active vibration damping on laboratory scale structures have
been continuing for a number of years. Recent surveys of experiments and facilities
are provided in [15, 16). There are several experimental structures and facilities on
which LSS research is conducted.

At the Charles Stark Draper Laboratory (CSDL), the Observation/Control Spillover
Experiment investigated active vibration damping of a 60-inch cantilevered fixed-free
aluminum beam [17]. Later experiments have been performed on the Flexible Satellite
Slew Testbed which consists of a rigid central hub with 4 equally-spaced flexible arms
extending radially to a diameter of 9 feet. The entire apparatus is suspended by a
vertical-axis air bearing [18].

At the NASA Langley Research Center (LaRC) in Hampton, Virginia, several ex-
periments have been conducted. In early experiments, active vibration damping of a
12-ft-long free-free uniform aluminum beam [19] and a 7-ft by 10-ft flexible grid [20]
has been corsidered. Vibration control experiments have also been conducted on the
20-meter, 18-bay mini-mast testbed in which the vertical truss is cantilevered at the
base [21]. The Spacecraft Control Laboratory Experiment (SCOLE) investigates the
control of a rigid platform with a 10-ft beam connected to the bottom of the platform.
At the opposite end of the beam is an offset reflector with a diameter of 40 inches (22].
More recent work is being conducted on structures in the Space Structures Research
Laboratory (SSRL) at NASA LaRC [23, 24]. The Dynamic Scale Model Test (DSMT)
Structure is a 500-inch meriform truss oriented horizontally and cantilevered at one
end. The CSI Evolutionary Model (CEM) is a 52-ft truss structure which is ori-
ented horizontally and entirely suspended by cables. This structure has a rib antenna
substructure attached to one end.

At the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in
Pasadena, California, the USAF Astronautics Laboratory and NASA jointly sponsor
experimental work in conjunction with the Large Flexible Structure Test Facility.
Early vibration suppression and shape control experiments were performed on a 16-
ft vertical pinned-free flexible beam [25]. Also, in the Piezoelectric Active Member
Experiment, piezoceramic material was used for sensing and actuation of a 12.5-in
horizontal, clamped-free aluminum beam [26]. Later vibration suppression work was
performed on the Flexible Structure Testbed which consists of a rigid hub struc-
ture with 12 equally spaced horizontal ribs projecting out for a total diameter of 19
feet [27). More recent experimental structures include the Modified Astromast, the
Precision Truss, and a 13-bay horizontal truss which can either be cantilevered or
suspended at its midspan [28].

At the USAF Astronautics Laboratory (AFAL), the Large Space Systems Laboratory




has performed experiments on the Grid Test Article which is a 5-ft by 5-ft aluminum
grid oriented vertically and cantilevered from the top {29]. Also at AFAL, the Ad-
vanced Space Structure Technology Research Experiment (ASTREX) Facility has
been developed. This structure consists of an 5.5-meter diameter primary mirror
support structure with three 5.2-meter graphite epoxy tubes forming a tripod shape
over the primary mirror. The tripod structure is the secondary mirror support me-
tering truss. The entire apparatus is suspended by a spherical air bearing with a
diameter of 48 cm. The air bearing is sits atop a 4.5-meter pedestal allowing the
structure to rotate about all three axes [30, 31).

At the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama, experi-
ments are conducted at the Large Space Structure Ground Test Facility (LSS-GTF).
The Active Control Technique Evaluation for Spacecraft (ACES) structure is a 13-
meter astromast with an offset antenna with a diameter of 3 meters attached at the
bottom. The structure is oriented vertically and is cantilevered at the top. A laser,
mirrors, and an optical detector attached to the antenna are used for pointing con-
trol experiments. Other types of experiments performed on this structure include
vibration suppression, system identification, and fault detection and isolation stud-

ies (32, 33, 34].

Other experimental facilities and structures exist at Martin Marietta Denver Aero-
space, Lockheed Missile and Space Company (LMSC), Harris Corporation, TRW, The
Ohio State University (OSU), the Virginia Polytechnic Institute and State University
(VPI&SU), the Massachusetts Institute of Technology (MIT), the State University of
New York at Buffalo (SUNY-Buffalo), and Texas A&M University.

The Ohio State Control Research Laboratory has been involved in such -based studies
for about 6 years, on structures both in-house and at U. S. Government institutions.
The experimental efforts in validating control design approaches for vibration damp-
ing of flexible structures have been very successful. The techniques considered and
further developed as necessary, ranged from simple Linear Quadratic feedback to
variable structure controllers in a decentralized configuration.

At the OSU Control Research Laboratory, we have performed experiments on vi-
bration damping on a free-free beam with proof-mass actuation [35, 36}, slewing
for single-link [36, 37, 38] and two-link structures [39] and an experiment involving
multiple mirror orientations on a slewing flexible link [39].

In conjunction with NASA LaRC, we addressed analysis and design methodologies
for control and parameter estimation of large flexible space structures. The focus
of the work was also on development and validation of technology, and subsequent
experimentation, that relates to the NASA LaRC Spacecraft Control Laboratory
Experiment (SCOLE) (40, 41]. The primary objective of the research was threefold:
first, to assess the performance of various methods, primarily from an adaptive control




viewpoint, in simulation tests and actual experimentation; and second, to determine
the effectiveness of various techniques of parameter estimation for use in control
applications. Finally, simplified minimum-time slewing for flexible structures was
also studied.

At JPL, we investigated various decentralized control approaches primarily related
to the overlapping decomposition approach. The main thrust of the project was
verification of the decentralized control approaches on the JPL/AFAL Flexible Struc-
ture Testbed. Also, some adaptive control and fault detection schemes were investi-
gated [42].

1.3 Description of the Experimental Facility

The structure considered is a 12-meter truss constructed from square aluminum tub-
ing, with cross members of Lexan plastic. It is composed of four sections-each con-
sisting of 4 truss bays. These sections are bolted together to form the truss with a
total of 16 bays. For closed-loop control, the truss is oriented in the vertical cantilever
position [43, 44].

Active damping is achieved through eight momentum exchange proof-mass actuators.
These devices are essentially linear DC motors—each supplied by its own current driver
and capable of supplying up to 1 pound force from 2 Hz to 100 Hz. Pairs of actuators
are mounted perpendicular to each other at the center of both the one-half and
three-quarter stations on the truss, thus affecting only the bending modes. There
are four actuators at the tip, two in each direction, mounted off center. In this
way, both torsion and bending can be affected. Sensors for the control system are
accelerometers, which are mounted on the actuator housings. The acceleration signals
are integrated to provide velocity signals. A point light source is located at the tip.
An optical sensor can record the position of the light source to provide information
on the displacement of the tip.

The truss is excited via two alternative sources. The first is an additional proof mass
actuator, identical to the control actuators. The second alternative is a large shaker,
mounted to the wall at the tip of the truss. The shaker applies a force up to 10 Ib
through a light connecting arm.

The control algorithms are implemented digitally using a custom control computer
manufactured by Systolic Systems, Inc. The system consists of the control computer
and a Sun 3/50 graphics workstation that serves as a development system. External
control is accomplished through a 12-channel, 16-bit, A/D and D/A card. The control
programs are written in C programming language, compiled on the Sun workstation,
and downloaded to the control computer. This system is capable of implementing




rather complex control algorithms at frequencies needed for the truss.

Data acquisition and analysis can be performed either by uploading data to the Sun
host or through an OnoSokki dual channel spectrum analyzer. Since the interface
between the control computer and the workstation is very slow, the spectrum analyzer
is frequently used to minimize the time required to collect data for each experiment.




2. ANALYSIS AND DESIGN OF CONTROLLERS FOR FLEXIBLE
STRUCTURES

Partial differential equation (PDE) models and finite element models (FEMs) are
often used to model flexible structures. For controller design, the FEM is often trans-
formed from nodal coordinates to modal coordinates by simultaneously diagonalizing
the mass and stiffness matrices. The model, put into state space form, can then
be reduced using balanced model reduction techniques. Controllers are subsequently
designed for the reduced-order model.

2.1 Modeling Issues

2.1.1 Partial Differential Equation Model

The first and probably most obvious problem is modeling the structural dynamics.
Large space structures are infinite dimensional. Using the notation of [45], they may
be described, in general, by a system of partial differential equations (PDE):

m(z)i(z,t) + Dou(z,t) + Aou(z,t) = F(z,t)

where u(z,t) represents the instantaneous displacement of the structure off of the
equilibrium position; m(z) is the mass density; Dot is the damping term; Aqu is the
internal restoring force term; and F(z,t) is the external force distribution.

Ay is a positive semi-definite differential operator on the infinite dimensional Hilbert
space of square integrable functions (with the usual inner product and associated
norm) defined on (the interval containing) the structure,  : Ho = L?*(Q). The
operator is usually assumed to have a discrete spectrum such that it satisfies the
eigenproblem

Aoy = wid

where wy represents the modal frequencies and ¢, represents the mode shapes.

The external force distribution can be decomposed into control forces and external
disturbance forces (including nonlinearities):

F(z,t) = F(z,t) + Fu(z,t)

The control forces are due to M actuators and may be described by:




F. = Bof.

where f represents the actuator amplitudes and By represents the actuator influence
functions (which, in general, allow for both point and distributed actuation).

Measurements from P position or velocity sensors (including integrated accelerometer
measurements) can be described as

y = Cou + Epu

where C represents the influence functions of the position sensors and Ey represents
the influence functions of the velocity sensors (which also allow for both point and
distributed measurement).

State Space Formulation from the PDE Model

Since the truss can basically be treated as a cantilevered beam, we shall generate
a state space representation of the system dynamics from the Euler-Bernoulli PDE
model. Consider,

El, 0*u(z,t)  O%u(z,t)
A ort + 5 =0 (2.1)

where

p = Density of Beam

A = Cross Sectional Area of Beam
E = Young’s Modulus

I = Area Moment of Inertia of Beam

w = Natural Frequency (rad/sec)
The solution can now be obtained by employing separation of variables:
u(z,t) = r,(z)q.(t) (2.2)

Substitution of Equation (2.2) into Equation (2.1), yields a time dependent and a
position dependent equation.

d?q,(t)

T twle() =0 (2.3)




d*r.(z) _PA
dzt El,

wir,(z)=0

A general solution of the position dependent equation is chosen to be

r:(z) = A;sinB,2 + B, cos 8,2 + C, sinh 8,z + D, cosh 8,z

(2.4)

(2.5)

Applying boundary conditions will allow us to solve for the coefficients and the vi-

brational frequencies.

The beam can now be forced with a set of point force actuators applied at specified
locations. By introducing forces, F,(t), acting transversely on the beam for the z — z
bending, at actuator locations z, (a =1,2,...,N,), and equating these forces with

Equation (2.1) results in

El &u(z,t) | ulz,t) 1
pA 9zt ot = pa Lz —z)Felt)

a-—l

where

Z rn q:;

1=1

Substituting Equation (2.7) into Equation (2.6) gives

E]y o d‘r,,-(:r) 1 Na
DA Az t z4 z = - - a 4
pA ( dz* (>+§f (2)3(0) = 3 3 8z — za) Fu(t)
From Equation (2.4),
d'r.(z) ‘
dzt Ber:(z)
where

a_[PA) 2
o= (f7)

Upon substitution of Equation (2.9) into Equation (2.8), one obtains
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(2.6)

(2.7)

(2.8)

(2.9)




3 (0:2rai(2)guilt) + (@) (t)) = A z §(z ~ za)Fu(t) (2.10)

=1 a=1

For the r;;(z) orthonormal with respect to

/(;L re(2)rs; (2)dz = {‘1’: : fj (2.11)

Equation (2.11) is multiplied by r,;(z) and integrated over JE(-)dz to obtain

/OL {f: rai(2)ra(2) (G (t) + w,?q,‘-(t))} dr =

=1
Na
p_i{ ./ob {; r”-(:r)&(-‘t - .‘L‘.,)Fu(t)} dz, j=1,...,00 (2_12)

which reduces to
i} 1 3o
g=(t) + wz?qza = CA Z r2i(Ta) Fa(t) (2.13)
a=1

Expanding Equation (2.13) for the first n-modes,
.. 1
q: + wz¥qzl = ;Zrzl(xl)Fl(t) + ra1(22)Fa(t) + - - + r21(zNa) FNa(t)

v 1
G twilqey = ;Z"n(zl)Fl(t) +re2(22)Fa(t) + - - - + r29(ZNa) Fna(2)

, 1
gz, + wzyz;qzn = ;)_A"rzn(zl)Fl(t) + r:n(12)F2(t) +--4 rzn(sz)FNﬂ(t) (214)

and dropping the z subscript, Equation (2.14) can be more generally represented by

oTF

3w

q+ w

Note that all mode shapes are to be evaluated at the point of actuation. The state-
space model is therefore
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0=A0+ [%] F (2.16)

where
22 [gd" '
A 0 1 .
A= [ —~w? o]

Inclusion of Actuators and Sensors into an Expanded State-Space Model

The sensor dynamics are implicitly included in the overall state-space model by as-
suming that the output of the colocated sensors is velocity, and not acceleration.
The sensor scale factors, in volts/m/sec, are the only values taken into account, since
the sensors had flat frequency responses over the range of interest. Only the output
C, D-matrices need to be adjusted to reflect this fact (i.e., C has nonzero elements
corresponding to velocity states, D is the null matrix). Therefore, it is the actuator
dynamics that must be combined with the truss dynamics.

Define the beam/truss dynamics to be the following:

.\.'y = AyXy + By Fy (2.17a)
Xx = AxXx + BxFx (2.17b)
Xr = ArXr+ BrFr (2.17¢)

the actuators to have dynamics,

X = AXi+ B\V.+ Gy Xy + GriXr; i= y direction (2.18a)

X'- = A,‘X,' + B,‘/, + GZ,'XX + GT.'XT; it = z direction (218b)
and the forces acting in each degree of freedom,

Fy = Ciz; + DV, (2.193) ¢

Fx = Ciz; + D;V, (2.19b)

Fr = C;z; + D;V, (219C) °
where

0 I
Ay, Ax, Ar = [ —t | —2¢w ]

12




0 1 .
A.'=[_k‘_ —di] 2=1,2,3,4

0 :
B,'—[Gi] l—1,2,3,4

C.‘ = m,[—k.- - d,‘] (= 1,2,3,4
D.' = m,,G.- 1= 1,2,3,4

where

State Vector = [Xy Xx Xr Xi ... ... Xn)T
Input Vector = [V, ... ... W]t
Output Vector = [V Z 6|7

where

Vi = Voltage input to power amplifier - i

2.1.2 Finite Element Model

Note that the description discussed in the previous section is for infinite-dimensional
distributed parameter systems. Obviously, it would be impractical (if not impossible)
to design controllers for LSS using an infinite-dimensional model. Therefore, a finite-
dimensional model is desired. Perhaps the most popular method is finite element
modeling (FEM) where the resulting model is of the form

Mi+Di:+Kz=Q (2.20)

where M, D, and K are the mass, damping, and stiffness matrices, respectively; z is
the nodal coordinate vector (displacements and velocities in each direction, at each
node); and @ is the generalized force vector. Note that D is usually positive semi-
definite and symmetric representing the internal structural damping, but can also
contain a skew symmetric component representing gyroscopic damping due to any on-
board rotors or constant spin rate of the whole LSS. M is a positive definite, symmetric
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matrix, and K is a positive semi-definite, symmetric matrix. These matrices can be
generated from any of several existing FEM software packages such as NASTRAN,
SPAR, STARDYN, etc. Whatever the case, the structural dynamicist obtains a FEM
of the form above.

2.2 Model Order Reduction

2.2.1 Transformation from Nodal Coordinates to Modal Coordinates

One basic approach to order reduction is through consideration of the modal distri-
bution. In order to use this approach for the FEM, the model must be converted from
nodal coordinates to modal coordinates by simultaneously diagonalizing the mass and
stiffness matrices. These matrices may be diagonalized in a variety of ways resulting
in differently balanced relations between the inputs to states and states to outputs
transformations. The balanced realization obtained here results in Cp; = Bg;, where
Cy¢ describes the relation between the nodal state vector and a velocity sensor, and
By, describes the relation between a point force input at the same location and the
nodal states. This provides some symmetry in the model and makes the model more

numerically stable for simulations.

The state vector is defined to be
e [ Tm ] (2.21)

where z,, represents the modal displacements and &,, represents the modal velocities.
To diagonalize the system, the matrix ® is used to define the unitary transformation
z = ®z,, such that

"M =1 (2.22)
and
TK® = Q2 = diag(w?,...,w?) (2.23)

where §) represents the modal frequencies and n is the number of modes in the model.

This matrix ¢ can be obtained using singular value decomposition (SVD) methods.
First, find diagonal €, and unitary U ( U7? = UT ) such that

0 = UTMU,. (2.24)
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Let Uy = /07! and K = UTUTKUU; such that K is symmetric and positive
semidefinite. Then, find diagonal €}; and unitary U; such that

Q, = UTKU,. (2.25)

By defining & = U,U,Us, it is evident that (2.22) and (2.23) hold. Note that Q?
is merely 2. Now Equation (2.20) can be transformed to modal coordinates by
substituting z = ®z,, and premultiplying by ®7

" Mdi,, + T DOz, + T Kbz, = ®TBu (2.26)

where B, is the force distribution matrix. Now, Equation (2.26) can be rewritten in
state space form using Equation (2.21)

Em 0 I m 0
[;m]=[—nz —¢TD¢][zm]+[¢TBq]"=Ax+B" (2:27)

The output matrix for velocities at the sensor locations can be written
y=Cz=[0 C,,@][x.m] (2.28)
Tm

where C, is the sensor distribution matrix. The displacements at the actuator loca-
tions are,

y=Caz=|C/® o][;m] (2.29)
Thus, the structure is represented by a finite-dimensional model in modal coordinates.

2.2.2 Balanced Reduction

The modal transformation described in the last section results in a system equal in
order to the FEM model. This model has too many modes to be used for controller
design, and the higher order modes are certainly inaccurate. In modal coordinates,
modes may be neglected simply by deleting the rows and columns of the state space
representation which represent these modes. Modes were deleted according the their
controllability and/or observability. Since the actuators and sensors are colocated,
the controllability and observability for structural modes are closely related.
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For the structural modes (as opposed to actuator modes), the controllability and
observability are very strongly linked to the modal frequency—lower frequency modes
are most important. In fact, for a white noise disturbance at most points on the truss,
the first few modes very accurately describe the motion of the truss.

The decision of which modes to retain from each subsystem can be made by con-
sidering the grammians [46]. The basic idea is to transform a system so that its
controllability and observability grammians are equal and diagonal (the system is
internally balanced). For a system in this form, the singular values of the grammi-
ans are contained in a diagonal matrix with the values in descending order. With
the controllability and observability grammians equal, we can then make meaningful
statements about how controllable and observable a given mode is, and delete those
modes from the model that are weakly controllable (and thus weakly observable).

In general, the controllability grammian W, is the solution of the algebraic Lyapunov
equation:

AW, + WAT + BBT =0 (2.30)
while the observability grammian W, satisfies the equation

ATWO + WoA + CTC =0 (231}
The block diagonal form of a system in modal coordinates (see equation (2.52a) for
example) is exploited to give closed form solutions for W, and W,. For W, the 2 x 2
blocks W;; are a solution of

AW, + W,;AT + B.BT =0 (2.32)

with A;, B; in modal coordinate form, and the closed form solution is

| wiwi(Gwi + Gw;) wj(w} — w}) d:
wo= (PGS w i )i (233)
where B;; = bTb;, di; is a measure of how closely correlated modes ¢ and j are,

and wj, (; represents the modal frequency and damping of the ith mode. For the
observability grammian W,, Equation (2.32) takes a form similar to Equation (2.31)
and F;; in Equation (2.33) is replaced with ;; = ¢ c;.

For the case where p > m (more sensors than actuators), it can be shown that the
system is orthogonally symmetric if we can find U such that C = UBTP and P is
diag(1,—1,...,1,—1) which satisfies AT = PAP. The cross-grammian is now defined
as W,, which satisfies
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AW,, + W,,AT + BUTC =0 (2.34)

There are several relations of W, that make it extremely useful for balancing appli-
cations:

LAUA
W.P = PW,

2
w2

and W (2.35)

Thus the equation above for W;; works for all three grammians with appropriate
changes in the §;; term, where for W,,, 8;; = ;.

Now we consider the balancing problem for a system in modal coordinates. The state
transformation T to take the system described in state space as { A, B, C} to balanced
form {T-'AT,T-'B,CT}, with equal and diagonal grammians

T-'W.T-T =TTW,T = £ = diag(s;) (2.36)
and with oy 2 0, > ... > 0, consists of right eigenvectors of W .W,, since

£ = (T7'W.TT) (TTW.T) = T~ (W.W,) T (2.37)

For orthogonally symmetric systems, W2 = W_W, implies that all balancing infor-
mation is in the eigenstructure of the cross—-grammian:

T-'W,T = A (2.38)
A? = %2, (2.39)

so A = diag(xo;) with £ = abs(A).

The above results can be used for model reduction by choosing the most dominant
modes by observing large magnitude changes of the singular values on the diagonal.
The dominant balanced subsystem has state-space representation

{4,B,¢) = {(I,O)T“AT( . ) ,(I,O)T“B,CT( . )} (2.40)

where columns of T é = T\ are right eigenvectors of W, corresponding to the

largest eigenvalues of A,;.
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Actuator modes are slightly more complicated. When the model is transformed to
modal coordinates, the actuator modes do not correspond to single actuators, but
rather to a linear combination of all actuators.

2.3 Controller Design Approaches

This project presented the opportunity to test a wide variety of control techniques.
These were all based on the Linear Quadratic Regulator (LQR). Linear quadratic
regulator (LQR) design methods are common and convenient controller design tech-
niques [47, 48]. The cost function minimized in these techniques is typically

J=: [7 270z + T Ru) a (2.41)

-~

or some variation thereof. Controllers are often designed using the pointing require-
ments. The inputs are usually weighted equally, thus R is diagonal.

One particular method of interest is linear optimal output feedback where only the
output is available for feedback [49]. Often in a LQR design, the outputs of a system
are weighted rather than the states. The resulting cost criterion is of the form

J = % /0 ” (yTQy + uTRu) dt (2.42)

where u and y are the system input and output vectors, respectively. @ and R
are positive semi-definite and positive definite matrices, respectively, of appropriate
dimensions. If @) is positive definite and the system is observable, this cost criterion is
a Lyapunov function and the resulting controller asymptotically stabilizes the system.

All of these design techniques have been discussed thoroughly in other sources; there-
fore, only a short description will be given here.

2.3.1 Linear Quadratic Gaussian (LQG)

In this approach, it is assumed that the system equations are

r = Az+ Bu+tw (2.43)
y = Cr+4v (2.44)

where w ~ N(0, W) and v ~ N(0, V) are independent white Gaussian processes. The
cost criterion which is to be minimized is
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J = lim -I-E {/of(zTQ:t + uTRu)dt} (2.45)

T—00 T

This approach uses the standard full state feedback with a Kalman filter to estimate
the modal states [50). The Kalman filter is of the form

&= A2+ Bu+ L(y - C#) (2.46)

where Z is the estimated state vector. The gain L is found by solving the Algebraic
Riccati equation,

PAT + AP+ W - PCTV'CP =0 (2.47)

where W is the process noise covariance matrix, V is the measurement noise covari-
ance matrix and L = PCTV-!,

The state feedback was computed to minimize the cost function by solving a similar
Riccati equation,

SA+ ATS - SBR'BTS+Q=0 (2.48)

The feedback is given by u = K = —R"'BT Sz.

Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR)

The LQG/LTR approach [51, 52, 11] combines the frequency domain and state space
techniques for a minimum phase system and is very similar to the LQG design dis-
cussed above. The fundamental idea in LTR design is to recover a target feedback
loop (TFL) which satisfies some design performance specification with a suitable
asymptotic design. An example of a TFL is a LQR design. If system states are not
available and they have to be estimated, some of the robustness properties of the
LQR design will be lost. LTR provides a remedy for this. The theory states that a
filter (not a Kalman filter) can be designed such that the overall design—controiler
plus filter—will asymptotically behave as the controller design (LQR).

The primary difference between the LTR technique and the LQG technique is the
filter design equation

PAT + AP+ BBT - PCTCP=0 (2.49)

The theory states that as the design parameter ¢ — oo, the system feedback loop
approaches the TFL asymptotically.
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2.3.2 Decentralized Control

In the control of Large Flexible Space Structures, the notion of decentralization plays
an important role. This notion is concerned with imposing information flow con-
straints on the various controllers of the system; controllers of the system are only
allowed to measure certain outputs of the system and control through corresponding
inputs. The decentralization constraint enters into large scale systems because it may
be impractical or even impossible to communicate signals from one controller to an-
other. Moreover, decentralization may be required by the control designer to achieve
reliability and a degree of redundancy, and it may impose a structure to the control
implementation by relegating control authority to separate channels.

A large scale system is called decentralized when either due to physical measure-
ment/actuation constraints, or by design, there exists a one to one correspondence
between sets of inputs and outputs. If we assume that the large scale system is linear,
the state space model is,

z A-’B+2f;13,~u;
vi = Cix+Diu; t1=1,...,N

(2.50)

where the index ¢ denotes an input/output channel.

During the last 10 years, a number of techniques have been considered for designing
decentralized controllers. A number of optimal control approaches have been pursued
by Davison {53, 54], Ozgiiner [55, 56], and others [57]. These basically define a
Linear Quadratic (LQ) framework and may utilize various avenues for solving for the
“optimal” feedback gains. Servo-compensators for tracking and disturbance rejection,
implementation constraints and frequency weighting may be included.

Recently, adaptive control techniques have also been used for decentralized systems.
Applications of model-reference adaptive control have been made to robotic systems
and flexible structures. Indirect adaptive control has also been considered on a flexible
structure.

Decentralization is particularly relevant in Large Flexible Space Structures for various

reasons:

o The sensor/actuator locations on the structure have a decentralized nature
which makes it difficult or even impossible to incorporate a centralized con-
trol architecture.

e Information transfer will be costly for complex space systems, so that the de-
signer may wish to impose decentralized (local) feedback.
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¢ On-line computations will be too time consuming for some structures so simpler
decentralized strategies will be necessary.

A model for the large flexible structure to be ~ontrolled under a decentralized infor-
mation structure is the following:

M6+Kq = ?LlBiui (251)
vi = Coq+Cuq i=1,...,N )
where u; € R™ is the vector of control inputs available at the i** channel, y; € R™
is the vector of measurements available at the i** channel, and ¢ € IR™ is the nodal
displacement vector. M and K are the inertia and stiffness matrices, respectively.
Such a formulation is general enough to include the cases of position measurements
only (through C,,) or velocity measurements only (through C,,), as well as the case
of distributed control with noncolocated sensing. Note that in all of the modeling
and control philosophies mentioned above, noncolocated feedback control schemes
may also be used. That is, decentralized control does not necessarily imply colocated
feedback, but rather the assignment of one or more sets of sensors to correspond to
one or more sets of actuators. The primary claim with the formulation (2.51) is that
certain measurements correspond to certain control inputs for purposes of feedback
control. This decentralized feedback mechanism may be due to spatial decentraliza-
tion in the large structure, or it may be due to an imposed structure dictated by the
designer, so that the channel-by-channel feedback is simpler to implement and faster
to compute in real time.

The well known transformation ¢ = ®¢, where & is a matrix of modal vectors (the
mode shape matrix), is now utilized as discussed in Section 2.2.1 to simultaneously
diagonalize M and K in (2.51) to give the state space formulation

d 0 I N 0
dt g ] [ -0% 0 ] [ g ] + ; dTM-1B; ] u; (2.52a)
vi = [Cn® C,9] [ g ] (2.52b)

We note that in the formulation (2.52a) no damping is present in the structure; for
our purposes, a term to account for damping effects may be easily included in place
of the lower-right zero of the first matrix in (2.52a). Typically, damping ratios on
the order of 0.5% are assumed as the damping effects are very small for large flexible
structures. Furthermore, actuator and sensor dynamics can also be appended to this
formulation.
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2.3.3 Centralized and Decentralized Optimal Output Feedback

Consider the basic decentralized quadratic regulator problem:

z = Az + Z B;u; z(0) = zo
=1
¥i = Cizx+ Dy t=1,...,v
with cost

J = /ow (xTQ:c + 223 =T Nu; + Z u,-TR,-u;) dt

=1 i=1
and the following feedback structure constraint:

u; = K; y; t=1,...,v

(2.53)
(2.54)

(2.55)

(2.56)

Remark 1: In the following analysis, the terms corresponding to a direct feedthrough
of the inputs to the outputs (i.e., D;) are neglected for notational convenience. If
direct feedthroughs are present, outputs of the forms y*** = y; — D;u; can be utilized.

It can be shown that the necessary conditions for minimizing J given by (2.55) with
the controller structure (2.56) imply the solution of the following system of nonlinear

algebraic equations:

{ ATP+ PA.+Q =0
AL+ LAT+ Xo=0
and
Vi,J = BTPLCT + RK;C;LCT + NTLCT =0 i=1,...,v
where

A, A+ Y BiK.C,
=1

Q = Q+ EC,-TK,-TR.-K.'C.' + E (N:K:C; + C?KeTN?)
=1 =1

T
Xo = ToZIgp-

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

A software package has been developed recently [58] to solve this problem and has
been used in all the numerical examples that follow. Many approaches have been
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introduced in the literature to solve the above system of equations. The approach
pursued in our software package is a gradient method which gives at iteration j

K= Kl —€eV,,J i=1,...,v (2.62)

where ¢ is a step size chosen by appealing to the Fibonacci linear search technique.

The solution methodology is as follows:

i) Choose an initial stabilizing gain and a tolerance é§ on the norm of the gradient

Vi, J.
ii) Solve the Lyapunov equations given by (2.57).
iil) Find the new gain using (2.62) and the Fibonacci linear search.
iv) Go back to step (ii) if ||V, J|| 2 6.

v) Stop.

Extensions of the basic problem can be made by considering the following decentral-
ized dynamic stabilizing compensator:

2 = Fizi + Gy
u,-=H,-z,-+M.~y,- t=1,...,v.

The case of dynamic output feedback is reduced to the previous problem by augment-
ing the state of the compensators with that of the system, i.e.,

o r

z = |
o Aol 2. & 13.- 0
U
bl s [0 B
' ' 0|0
.Z‘/_ -zud
21
g,-: C'JO 9 0 22
0 {]0C 0 :
2
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where v; = z; and C'.- is provided by the designer; modifying the cost to

J = % /000 (zTQz + 22 :ETN."U.' + Z U?R,!ui + i zaTRuzzl) dt.

1=1 i=1 =1

Further extensions of the above problem can be made by incorporating frequency
weighting into the quadratic criterion. Centralized frequency weighting has been
introduced in [5]. A decentralized frequency weighted cost was mentioned in [56] and
has recently been further developed [59]. We now outline some of the steps necessary
in reducing the decentralized frequency weighting to the decentralized LQR problem.

2.3.4 Decentralized Frequency Shaping (DFS)

Frequency shaping permits frequency dependent weighting matrices in the quadratic
cost functional [5]. This allows the designer to use some of the classical frequency
domain constraints in the state-space LQ setting. The cost functional in the frequency
domain becomes:

= 5 (XQuX + EW(i)@utio) + Uil )W) do (26

2J-c0 i=1

where Qo > 0 and @; and R; for: = 1,...,v are positive semidefinite and positive
definite Hermitian matrices respectively.

Frequency shaping is used in the following way. As presented in [60], frequency de-
pendent weighting on the control allows for better robustness properties than similar
weighting on the state, so the control input is chosen for the frequency dependent
cost weighting and the output weighting remains constant. By choosing R;(jw) to be
larger for large w than for small w, control actions are penalized at high frequencies
more than low frequencies. Effectively, this choice of R;(jw) reduces the loop gain of
the i** channel at high frequencies which, in turn, results in a system that can better
accommodate high frequency uncertainties related to channel z.

Using the notation of [59], Q; and R; are factored as:

Q= Q0. (2.64)

R = RR i=1,...,v. (2.65)

For this decomposition, the cost may be written as

J = / °° (X‘QOX Y (Vv + 0;(‘/.-]) dw (2.66)

ied =1
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Y, = QY
(2.67)
U, = ﬁ.‘U.’ 1=1,...,v.

Assuming the Q; are proper rational matrices and the R; are rational matrices with
entries being either proper or non-causal, they can be realized in the following manner
respectively:

n = F'ni+Gly

(2.68)
Y; = Hini+ Ny, i=1,...,v
and
z; = F'zi + Giu;
(2.69)
k
U, = H}‘z,-+ZN,-”u$”) i=1,...,v.
r=1

where (-)?) denotes the pth derivative of (-) with respect to time. Furthermore, it
is assumed that the entries of R;(w) have k more zeros than poles. For additional
results in decentralized frequency shaping, see [59].

2.3.5 Overlapping Decompositions

Due to the complexity and large scale of systems describing flexible structures, de-
composition methods play a significant role for problem solving. One method for
controller design of interconnected s 1bsystems is a decentralized approach which as-
sumes that each subsystem is controlled independently using local information and
performance considerations. This method deals with disjoint subsystems, where there
is no information overlap in either the dynamics, control, or output. However, for a
large class of systems (e.g., flexible structures, traffic regulation, and power systems),
the sharing of information among controllers is essential. For systems of this type, it
is natural to consider an overlapping decomposition approach, where subsystems can
have overlapping of states, inputs, and outputs.

The underlying concept for overlapping decomposition is the inclusion principle. In
the next section, we introduce the inclusion principle and several concepts relating
to inclusion such as expansion/contraction and restriction/unrestriction. Using these
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concepts, controllers are designed for the individual (disjoint) subsystems, then con-
tracted to the original state-space. Conditions for contraction of controllers are also
discussed.

The Inclusion Principle

The mathematical framework for decentralized control using overlapping decompo-
sition is the Inclusion Principle. Here, overlapping subsystems are expanded into a
larger state space and control space, such that the subsystems appear to be decoupled
in state, input, and output. Control laws are then designed for these smaller, disjoint
subsystems. Using certain contraction conditions, the subsystems and controllers are
contracted to the original space for implementation, and if all of the appropriate con-
ditions are met, then the closed loop properties that were derived for the expanded
decoupled subsystems are intact when the system is contracted. For this structure,
we consider the state, input, and output inclusion problem for controller design.

Consider a system with two decentralized control agents described by
t = Az + Byu; + Byu;, z(0)=z0 € R"
ynn = Ciz (2.70)
y2 = Cor

where r € IR" is the state, u; € R™ is the input, and y; € IR™ is the output of the

ith control agent (i = 1,2). It is assumed that the system given above does not have
any decentralized fixed modes (DFM’s) [61].

Consider the following partition of the state r:

xo)cl
IT=| Z, (2.71)

$0252

where z,., € IR™% is observable and controllable only by agent-z, and r,. € IR™*
is observable and controllable by both agents. Then the matrices of (2.70) have the
following forms [62]:

An 0 O
A= | An An Axn
0 0 As
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BE(B, : By =

Bn : 0
le . ng (272)
0 . B32

Ci Cn Ciz O
cel...|=]-. . ..
[Cz} [ 0 Cxn Czs]

Consider the transformation:

Toye, }
xOC

&>
I
<
8
]

€R* fi=n+n, (2.73)

The expansion [i) of the original system (2.70) with respect to the transforma-
tion (2.73) is given by (see [9, 14] for developments):

.1;: = :‘i:i-{-[;u,
- s (2.74)
where
20)=Vro € R (2.75)
and
An 0 : 0 0
. Az Ay 1 0 Ay al A Ar
A: PP “ e “ e cae e e - N -
| [ 4]
Az 0 i A Ana
[ 0 0 P 0 Ag |
[ B, 0
B : - -
PO A PN - -
- 2| % . (2.76)
. Bn B,
B’Zl . 322
0 : Bf)')J
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“n Gu = 00 e[é‘r Cz]
0 0 : Cp Caxn

It can be shown [7] that the response z(t) of (2.70) is related to the response i(t)
of (2.74) by

z(t) = VIz(t) Vt>0 (2.77)

where V7 is the generalized inverse of V satisfying V!V = I. Furthermore, (2.70)
and (2.74) have equivalent input/output descriptions, i.e.,

G(s)2 C(sI - A)'B=G(s) &2 C(sI- A'B (2.78)

The systems are related by the following transformations from [9]:

A= VAU+M
B VBQ+ N (2.79)
C = TCU+L

where M, N and L are complimentary matrices of appropriate dimensions. For (2.74)
to be an expansion of (2.70), a proper choice of M, N and L is required as given in [9).
In this case, the transformation matrices are given as follows:

"1 0 0
01710
V="Aor10]
| 0 0 ]
U = vi
0 0 0 0
0 4a _4z 9
M=10 -2 m of
(0 0 0 0
Q 1,
N 0,
T 1,
0 S2 _Cu o

Now consider the design model described by:
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j . gz + Bu (2.80)
where

A=10 4b

B = -f‘ %2., (2.81)

- [,

The transfer function matrix (TFM) for the design model (2.80) is given by:
G(s) & C(sI — A) B = block diag [Gi(s), Ga(s)] (2.82)
where Gi(s) is the TFM for the decoupled subsystem:

i = Az + Biu;
1 A‘ 3 ) 2.

v = Gy i=1,2 (28)

Note that (2.83) is the minimal local model for agent-:.

Model Reduction

The decision of which modes to retain from each subsystem can be made by con-
sidering the cross grammians as discussed in Section 2.2.2. A decentralized control
strategy for a LSS is arrived at by the following two tasks: (1) decide on an appro-
priate system decomposition, and (2) truncate the model to a manageable number of
modes. Both of these goals can be realized by using a balanced realization [46]. In the
decentralized case, we can perform a decentralized balanced realization for each 1/0
channel, and perform modal truncation on each subsystem by deleting those modes
that are weakly controllable (observable) through that particular I/O channel. Thus,
a decentralized balanced realization not only gives the control designer insight for
model reduction, it also helps to decide on the appropriate subsystem decomposition.

In [63], Williams presents an efficient algorithm for computation of grammians for
models given in modal coordinates. In his work, decentralized control is assumed,
where control is affected through a given 1/0 pair (u;,y;), or u; = Gi(s)yi(s).
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2.3.6 Isolated Boundary Loading and Controlled Component Synthesis
(CCS)

Isolated Boundary Loading

In Component Mode Synthesis (CMS) [64, 65, 66], a large flexible structure is assumed
to be composed of components or substructures. Each component or substructure is
separately modeled using finite element modeling techniques. The order of each of
these component models is reduced using the assumed-modes method or the Rayleigh-
Ritz method with constraint equations. The reduced order components are then
mathematically coupled together with interface compatibility equations to form a
reduced order model of the entire structure.

Component modes can be classified as rigid-body modes, normal modes, constraint
modes, or attachment modes {67, 68]. The basic idea in CMS is to find a set of com-
ponent modes for each component that make the greatest contribution to the modes
of the composite structure. Several methods exist to select these modes. Perhaps the
most widely known methods are the Craig-Bampton method [69], the MacNeal-Rubin
method (70, 71], and the Benfield-Hruda method {72].

Isolated boundary loading developed by Young [13] is a component modeling method
which is based on the boundary loading ideas of the Benfield-Hruda method. Dynamic
contributions of other components are included in the model of a given component.

This discussion will be restricted to a system comprised of only two components.
Superscripts A and B will be used when referring to quantities associated with the
two components. Each of these components is assumed to have dimension n. In
general, any number of components containing any number of nodes may be used.

('MS methods separate the component nodes into two groups, interface nodes and
internal nodes. Here, the internal nodes are further separated into internal boundary
nodes and internal nodes. The internal boundary nodes are the nodes of the boundary
element that are not actually connected to the adjoining structure; i.e., the nodes
that connect the boundary elements to the internal elements of the same component.
The remaining nodes are the internal nodes. Thus, the finite element model of a
component can be partitioned as

My My, 0 Gi Ki Ky 0 g 1 fi
Mg My Mg G | + | Kii K Kij a | =| fe (2.04)
0 My M;|l§ 0 Ky Kj; g fi

where ¢, qi, and ¢; are the generalized displacements at the interface, internal bound-
ary, and internal nodes, respectively.
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In isolated boundary loading, a truncation matrix is used to eliminate the internal
and internal boundary nodes. The truncation matrix is given by

L
v = [ 0 ] (2.85)
0

Thus, the interface loading matrices are merely the stiffness and mass matrices cor-
responding to the boundary nodes of the adjoining component:

KE = BT KB y5, (2.86)
MB = yBT B B, (2.87)

The resulting modified stiffness and mass matrices for component A are given by

(KA KA 0 vBTKBYB ( 0
KA = | Kf K4 K,:}. 0 00 (2.88)
| 0 Ki K 0 00
[ MZ M40 vETMBWE 0 0
Mh, = | ME M4 MG |+ 0 00 (2.89)
L 0 MA M3 0 0 0
which reduce to
[ K2+ KB Ki o
KA = KA K& K,;( (2.90)
i 0 l\’ﬁ Kf
[ MA+ME M4 0
MA = MA M4 M,;:{ . (2.91)
| 0 Mj M
By letting the modified boundary submatrices be
K, = Kl+K] (2.92)
Mc?[[. = M.’:+Mf, (293)

Equations (2.90) and (2.91) can finally be written as
K, Ki 0
KA = | K@ KA K2 (2.94)
0 KA KA
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ME = ME MA ME
0 MA MA

i

MA. MA 0O
. (2.95)

Similarly, the modified stiffness and mass matrices for component B can be written
as

KB KB 0

KB = Kg KB KB (2.96)
| 0 K& K2
[ ME  MB 0o

MB = | ME ME Mg (2.97)
| 0 MR M

where

K2, = K&, (2.98)

B A

A/[""IL == A/I“IL. ( .

Equations (2.99) and (2.98) indicate that the modified boundary submatrices are
the same for each of the components involved and may be found either by loading
component A onto component B or by loading component B onto component A.

It should be noted that the modified mass and stiffness matrices can be determined
from the model of an expanded component consisting of the original component ex-
tended one element into the adjoining component [13]. The model of the expanded
component will contain the internal boundary nodes of the adjoining component in
addition to all of the nodes of the original component. The modified mass and stiff-
ness matrices are then found by deleting the rows and columns associated with the
internal boundary nodes of the adjoining component.

The coupling of substructures using isolated boundary loading employs superposition
to couple the components at the boundary. Essentially, the equation of motion for
the boundary of the coupled structure is found from superposition of the forces and
motions at the boundaries of the individual components A and B such that

g8 = ¢t +4P (2.100)
fAB = fA4 B (2.101)

The finite element model for the coupled structure is given by

MABGAB | (CABAB _ AB (2.102)
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where
[ KA KA 0 0 ©
KA KA KA 0 0
KCAB  — 0 Ki KA+KE KE o (2.103)
0 0 KB KB K,%
| 0 0 0 KE KP
[ M M} 0 0 0
ML MA M 0 0
MAB = | 0 MA MA+ME ME o (2.104)
0 0 ME  ME M,‘é
0 0 0 M5 M
T
*® = [qf of ¢#® P ¢F| (2.105)
T
AN A (2.106)

Using isolated boundary loading for component modeling and this superposition-
based approach for substructure coupling, the coupled model is the ezact model for
the composite system. In conventional large-scale system design methods, the interac-
tions between components are generally discarded in decoupled substructure models.
The component models formed using isolated boundary loading, however, include the
interactions with other components. The component models are identical to the de-
coupled subsystem models obtained using overlapping decomposition {7, 8, 9, 10) on
the composite system model. Thus, the powerful tools used in overlapping decompo-
sition analysis of large-scale systems may be applied to the isolated boundary loading
models.

Controlled Component Synthesis

Controlled component synthesis (CCS) is a control design method developed by
Young [13] in which controllers are designed for individual components based on com-
ponent models as discussed previously. Using conventional large-scale system design
methods requires a full model of the entire system. This model is typically decom-
posed into interconnected subsystem models which are then decoupled by ignoring
subsystem interaction lerms. A key advantage of controlled component synthesis is
that a full model of the entire structure is not required. This decentralized control
strategy extends the component mode synthesis modeling concepts into control con-

cepts by allowing component controllers based on component models to be developed
independently.
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Overlapping decomposition can be used to derive component models from the com-
plete model of a structure. Considering the two-component system example from the
previous section, the component model is given by

ME, Mi 0 g K#, Ki O© gt

Mg MG M::} gt {+| K& K& Ki} | =

0 ML M;]Ldf 0 Ki K;]ldf
fé MR + KReP + [P
&1+ 0 . (2.107)
f2 0

The second term on the right side of this equation represents the dynamic contribu-
tions of the internal boundary motion of component B to the motion of component A.
Neglecting this term results in the component model for A which would be derived
using isolated boundary loading.

The interlocking control concept is one of the key ideas behind CCS. With inter-
locking control, colocated sensors are placed at the internal boundary coordinates
of each component. The component controllers are designed using the component
models as derived in the previous section to minimize motion at the internal bound-
ary nodes. Essentially, one or more controllers are inserted near the substructure
interfaces as shown in Figure 2.1. By minimizing the internal boundary motion, the

Figure 2.1: Inserting a Controller
transmission of disturbances between components is suppressed, the second term in

Equation (2.107) becomes small, and the accuracy of the assumed component model
INCTeases.
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Although any technique may be used for controller design, the linear quadratic op-
timal regulator (LQR) is perhaps the most convenient {13]. The weighted internal
boundary states are to be included in the cost function with the weighted control
inputs. Because the sensors are located at the internal boundary coordinates, these
states are merely the outputs of the system. The control inputs are u = f; because
the actuators are also located at the internal boundary coordinates. Using the LQR
approach, the component model for component A is formed as

ME, Mi 0 gt Ki, Ki 0 ¢t 0
Mi  MA M,;}- i |+ | Ki KA K,;}- g | =] ut | (2.108)
0 Mﬁc MJJ é,A 0 Kﬁr KjJ' qJA 0

where u“ is the control input. Using velocity measurements, the output is defined to
be

y? = g (2.109)

The control law for component A is found to minimize the cost function

_ % T (v2 Q4 + uATRAUA) dt. (2.110)
In general, a state feedback control law could be found to minimize this performance
criterion. However, optimal output feedback can also be employed to achieve good
results and is easier to implement than state feedback. This procedure is repeated
for each component. CCS controller designs are inherently decentralized since only
the component outputs or states are required for the component control law.

2.3.7 Maximum Entropy/Optimal Projection (MEOP)

One of the fundamental concerns in the application of modern control designs for
active vibration suppression is the loss of stability and the performance degradation in
face of modeling errors. This is especially true in the area of flexible structures which
are inherently infinite-dimensional as discussed in Section 2.1.1. The truncation of the
infinite dimensional system to a finite dimensional system (as in the finite element
representation of Section 2.1.2) induces truncation errors which tend to be more
significant at high frequencies. Therefore, the theoretical (calculated) mode shapes
and frequencies are less accurate for higher-order modes. This can be interpreted as
the higher modal frequencies and mode shapes are more sensitive to small details of
geometry, construction, and material properties. The high frequency modes are thus
subjected to larger errors in a finite element model.
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To tackle this kind of control problem, Hyland [73, 74, 75] proposed the stochastic
Maximum Entropy (ME) approach to handle model uncertainties in order to improve
the system robustness with respect to parameter variations and high order unmodelled
dynamics. The ME approach to model uncertainty is essentially induced by the
minimum data set which incorporates as little statistical parameter information as

possible consistent with the available a priori statistical data. The basic premise y
of the Maximum Entropy error modeling is that the magnitude of the error is a
white noise process. The justification for the use of the Maximum Entropy stochastic .

approach for structural control design is reinforced by various qualitative results for
the mean square optimization problem examined in [75].

From the view point of control engineers, the ME approach was developed as a means
to design compensators with the performance/robustness trade-off being explicitly de-
termined by the quadratic cost functional. Thus, the ME algorithm is essentially a
“robust” extension to LQG theory. By explicitly including the parameter uncertain-
ties in the model, the performance/robustness trade-off can be directly manipulated
to suit the design requirements.

In addition to the potential problem of modeling errors in flexible structures, the large
dimensionality of the dynamic model inherent in the structural system poses another
problem in control design and implementation. It is known that the classical LQG
controllers have the same order as the controlled plant. If the plant is of high order,
then the LQG controller dimension may be too large for real time implementation.
Reduced order controller design has therefore received much attention in the past few
years for flexible structure applications. In the literature, various design algorithms
appear which involve either ad hoc reduction and truncation schemes, or the two-step
approach to reduced order controller design in which a compensator order reduction is |
preceded by the LQG design or a LQG design is preceded by the plant order reduction |
[46, 76, 77, 78, 79, 80]. However, these approaches are not optimal, and worse yet, |
they may cause closed loop instability [81]. The Optimal Projection (OP) approach

proposed by Hyland and Bernstein [82] focuses on developing direct reduced order

design methods which have greater flexibility with respect to the dimension of the

controller. It involves the minimization of a quadratic cost functional while directly

constraining the order of the feedback controller to guarantee the optimality of the

reduced order design.

In order to design a controller which takes care of both the robustness issue and
the controller dimensionality issue, the combined Maximum Entropy/Optimal Pro-
jection (MEOP) methodology has been developed[83]. This methodology provides a
powerful, yet very structured algorithm for designing a robust, fixed-order dynamic
compensator.

Consider an n** order linear time invariant system
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¥ = Ar + Bu+ w, y=Czr+w;, , (2.111)

under the usual assumptions of controllability and observability, where w;, w; are
zero mean white noise processes with noise intensity matrices V; and V;, respectively.
It is required to design an n'* order robust, zero set-point compensator

.= Az + Fy u=-—Kz, (2.112)

to minimize the cost functional

J= lim 2E { [ @ ORrat)+ uT(t)Rgu(t))dt} (2.113)

T—00 T

forz e R*, z. ¢ R, u € R*, y € R', A €¢ R™", B € R**™, C € R'*",
Ac € R**™ F € R™ K € R™", R, € R"*" (positive semi-definite), and
R; € R™™ (positive definite).

The first order necessary conditions for the quadratically optimal, steady state, ro-
bust, reduced-order dynamic compensation are the existence of non-negative definite
matrices P € R"", @ € R™", P € R™", Q € R™ " satisfying the following
coupled Lyapunov and Riccati equations:

I
0=PA,+ATP+3 ATPA, - PTR;!P, + R

=1
“ ry
+d (A - Q,V5'CTP(A: — Q,V;;'C))
1=1
+7TPBR;'B"Pr, (2.114)
o
0=A,Q+QAT +Y AQAT - Q.V;;' QL + v,

=1
m

+ Z(A! - Bi'RZ_al PU)Q(Ai - BiRZ—sl PO)T

1=1

+r.QCTVICQr] (2.115)
0= PAgs+ AXsP + PTR;!P, —rTPBR;'BT P, (2.116)
0= ApsQ + QATs + Q.V,,'Q7 — 1.QCTV; ' CQr] (2.117)

where the projection operator r € IR"*" is given by

r = SSTIIOA)
k=1 k
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and [1.[Q P] represents the k** eigenprojection of QP, with 7, = I, — 7. In (2.114)-
(2.117), A; € R™", B; ¢ R™™, C; € IR'*™ are the uncertainty matrices of the plant
[83], from which

A= A+1ive A B,= B+ 1T, AiB;
C, EC-{-%Ef-‘:l CiA; Ry, = Ro+ 3, B?(P+P)Bi
Vo = Vo + T4, CHQ + Q)CT Ags = A, - Q.V;'C,
Ps=BTP+ 5%, BT(P + P)A; Aps = A, — B,R3} P,

Qs =QCT + T, AlQ + Q)CT

where x4 is the number of sets of uncorrelated uncertainties.

In terms of the solution to the above MEOP equations, the compensator dynamics
are specified according to

A. = [(A,-Q.V,;'C, — B,R;! P,)GT (2.118)
F = TQ,v,;! (2.119)
K = R;!'P.GT (2.120)

where the operators G € R™*™,I' € R"*™ must satisfy 'GT = I,,_, and GTT" = 7.

2.3.8 H, Design Approach

A major emphasis in control design is the issue of robustness. As we have men-
tioned previously, uncertainties tend to exist in system models. In the case of a large
flexible system, there are uncertainties in parameters such as dampings and frequen-
cies of flexible modes. Also, models of flexible structures typically neglect dynamics
of higher frequency modes. Qur control objectives must be achieved despite these
modeling errors. These two types of uncertainties can be described as structured
and unstructured uncertainty. The control system must be robust enough to handle
both types of uncertainty and still be able to keep the designed closed-loop perfor-
mance. The control method described here is an H.,-based technique of “weighted
gap optimization,” which is closely related to Glover-McFarlane loop-shaping.!

Weighted Gap Optimization

The (weighted) gap metric is a measure of uncertainty based on the notion of the
graph of a dynamical system. The primary motivation for this distance measure is

"The H work presented here was performed by Scott Buddie for his M.S. thesis [84] under the
guidance of Professor Malcolm Smith and was not directly supported by this contract. The work
is included for completeness.
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Figure 2.2: Standard Feedback Configuration

the need to handle unstable and marginally stable systems in a satisfactory way from
the point of view of uncertainty. It may be claimed that a graph-based distance
measure has certain advantages in other situations also, such as when lightly damped
modes are present, as is the case with flexible structures.

The gap between systems P and P, can be defined as
8(P, P,) := max{$é (P,P), § (P, P)} (2.121)

where the directed gap 5 (P, Py) is given by

'( 11‘V4 ) - ( 11tv411 )Q.L’ (2.122)

and P = NM~! and P, = NyM;? are normalized right coprime factorizations of
the system transfer functions [85]. For weighting functions W;, W, € H, such that
W, W;! € H,, the corresponding weighted gap metric 6( P, P, W,, W;) is defined
as:

§(P, P, W,,W;) := §(W, PW,,W,P,W,). (2.123)

By using these weighting functions, one can emphasize or de-emphasize differences
between the two plants at desired frequencies [86].

Consider the feedback configuration of Figure 2.2 where P and C are linear systems.
The configuration, denoted by [P, C] is defined to be stable if the operators z; — e;
for i,7 = 1,2 are bounded. This is equivalent to
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I -¢c\' _( u-cp' c(-PC)?
( ) = ( P(I-CP)' (I - PC)™ ) (2.124)

being in H,.
Let [P,C] be a stable feedback configuration and define

bP,C, W, W,):= “( w; ) (I-CcP)' (W -cCw;?) ‘_l (2.125)

00

as the maximal amount of uncertainty in the weighted gap that a feedback system
can tolerate [87, 88].

The optimal robustness radius can be defined as

bopt(P) := max b(P,C,W,,W;).

C stblz

or

bope(P) := ( inf

Cstblz

( “,i-l ) (I - PC)-I (w/i-x , _Cwo-l)

-1
WP ') . (2.126)

The problem of weighted gap optimization reduces to solving this well-posed H.-
minimization problem (85, 89].

The problem of finding a controller that is optimally robust with respect to the
gap metric is identical to the problem concerning robust stabilization under coprime
fraction uncertainty. This implies that any technique used to find a controller for
coprime fraction uncertainty can be used to solve the gap metric problem. A solution

to the coprime fraction uncertainty problem is given by Glover and McFarlane [90,
91, 92].

In the work of McFarlane and Glover [92], a certain “loop shaping” design proce-
dure is proposed. This procedure begins with an augmented plant transfer function
Paug := W,PW; containing input and output “weighting” functions W, and W;. The
weighting functions are selected on the basis of a desired loop shape for the control
system. The controller is designed to give optimal robustness with respect to normal-
ized coprime fraction perturbations of F,,,. We point out that this choice of design
synthesis problem is precisely the same as the H,-minimization problem given by
Equation (2.126). This algorithm was primarily used in calculating the controller for
the truss structure.

Safonov and Chiang claim that Moore’s reduced model can be constructed without
computing a balancing transformation. This can be done by constructing projections

40




in terms of bases for the left and right eigenspaces of the product of the controllability
and observability grammians £.X, [93]). There are two methods which may be used to
perform the first step of this algorithm which computes matrices whose columns form
bases for the left and right eigenspaces of X X, associated with the “big” eigenvalues.
The first method employs the Schur form of the matrix ¥.¥, and a Givens rotation
to produce ordered values along the diagonal of the matrix. The second method is
based on using the “square-roots” of £, and ¥,. We chose to use the first method.
The decision to truncate modes is made by choosing the desired number of columns
of the matrices whose columns form the bases for the left and right eigenspaces. It is
important to note that the resulting transformed system is not a balanced realization.
but it is an equivalent realization of the balanced realization obtained by Moore’s
algorithm. Therefore, if a system needs to be balanced, this approach cannot be
used. Our concern in this effort was to avoid numerical conditioning problems, so an
equivalent realization was deemed sufficient.
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3. EXPERIMENTAL HARDWARE CONFIGURATION

3.1 Truss Structure, Controllers and Actuators

The structure is a 12-meter truss [43, 44] oriented in the vertical cantilever position,
as shown in Figures 3.1 and 3.2. It is composed of four sections with 4 truss bays
each. These four sections are bolted together to form the truss with a total of 16
bays. The truss is constructed from square aluminum tubing, with cross members of
Lexan plastic bolted into place.

The active damping is achieved through eight momentum exchange proof-mass ac-
tuators. These devices are essentially linear DC motors with permanent magnets
mounted on low friction sliding shafts and coils fixed to the housings as shown in Fig-
ures 3.3 and 3.4. The proof mass is centered with lightweight springs. Each actuator
is supplied by its own current driver, which also incorporates viscous damping via a
linear velocity transducer (LVT) mounted between the proof mass and the actuator
housing. The actuators are capable of supplying up to 1 pound force from 2 Hz to
100 Hz. The locations of the actuators are shown in Figure 3.5. There are pairs of
actuators mounted perpendicular to each other at the center of both the one-half and
three-quarter stations on the truss as shown in Figure 3.6. These actuators affect only
the bending modes, not the torsional modes. There are four actuators at the tip, two
in each direction, mounted off center as shown in Figuretipstat. This orientation is
used to affect both torsion and bending. Actuators can be monitored via three video
cameras located on scaffolding beside the truss. The scaffolding also provides easy
access to any of the actuator stations. The overall system is shown in Figure 3.8.
Sensors for the control system are accelerometers, which are mounted on the actuator
housings. The acceleration signals are integrated using bi-quad integrators with a
break frequency of 0.1 Hz to provide velocity signals. A point light source is located
at the tip—24 inches from the center of the truss. A digital camera can record the
position of the light source, and thus provide information regarding the displacement
of the tip.

During testing, the truss is excited via two alternative sources. The first alternative
is an additional proof-mass actuator, identical to the control actuators. This adds
dynamics to the structure which have been taken into account in the model of the
structure. The second alternative is a large shaker, mounted to the wall at the tip
of the truss. The shaker applies a force to the truss through a light connecting arm,
and is capable of delivering forces up to 10 Ib.
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Figure 3.1: A 12-Meter Vertical Cantilever Truss Structure
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Figure 3.2: 12-Meter Truss Experiment in Vibration Test Facility
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Figure 3.5: Actuator Locations on Truss
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3.2 Real-time Control System

The control algorithms are implemented digitally using a custom Optima 3 control
computer manufactured by Systolic Systems, Inc. The system consists of the control
computer and a Sun 3/50 graphics workstation that serves as a development system.
The control computer has a Motorola 68030 host processor with a 25 MHz clock
and 4 MB of RAM. For high speed vector calculations, the Optima 3 has a systolic
array processor with a peak rating of 32 million floating point operations per second.
External control is accomplished through a 12-channel, 16-bit, A/D and D/A card.
The control programs are written in C programming language, compiled on the Sun
workstation, and downloaded to the control computer. Unfortunately, the interface
between the Optima 3 and Sun is extremely slow.

Nevertheless, this system is capable of implementing rather complex control algo-
rithms at sufficient frequencies for truss control. For example, a 14-state dynamic
controller can easily be run at sampling periods less than 5 ms.

Data acquisition and analysis can be performed either by uploading data to the Sun
host or through an OnoSokki dual channel spectrum analyzer. Since the interface
between the control computer and the workstation is very slow, the spectrum analyzer
is frequently used to minimize the time required to collect data for each experiment.
Usually, rms values of the sensor and actuator signals were calculated on the Optima
3 to take advantage of the array processing capabilities. The rms values were used as
a quick performance summary of a given experiment for determining whether or not
to save (upload) the entire data record.
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4. SOFTWARE FOR CONTROL, SIMULATION, AND DATA
ACQUISITION

4.1 Goals of the Software

One of the aims of the AF in-house project was to develop a real time computer
control system which could be programmed in a higher level language. This would
provide several benefits:

o Real-time control tasks such as reading A /Ds, controlling sampling period, etc.
are all performed in easy to access, prewritten subroutines.

e Controller implementation is made easier—control laws can be performed in
matrix form.

e Ability to store data during experiment, then upload for post processing.

e User friendly software possible.

As a result, the control and simulation software written can be used by an individual
with minimal experience with the computer system. By the same token, additional
controllers could be added to the software with minimal understanding of C program-
ming language and specific knowledge of the Sun and Optima 3 computers.

4.2 Control/Simulation Program

Both control and simulation algorithms, including several different types of con-
trollers, are implemented entirely in one piece of software. This was done for a
number of reasons. First, we wanted to be able to test the controller software as
thoroughly as possible without actually controlling the truss or running the software
on the Optima 3. This enables the user to write, compile, and test the software on
any Sun workstation. Second, it was felt that it would save effort in the end, since
changes to the controllers or program features would only have to be made to one
program. Third, it also gives the benefit of being able to run simulations on the
Optima 3, which greatly decreases the run time.

4.2.1 Software Overview

The control/simulation software is interactive—prompting the user for various pa-
rameters about the run. A sample run of the program is given in Appendix A. The
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prompts should be self explanatory. There has been some effort to make the program
accept only correct responses, although it is certainly possible to enter erroneous data.
Throughout the run, the program reports various events to the user each preceded by
an ellipsis (... ). These reports are merely intended as reminders of what is happening
and as an aid for debugging.

The software has been divided into five files to make editing a bit more manageable.

exp.c This is the main program, which contains all the prompts to the user and
performs all the calculations for control.

subroutines.c This file contains several important subroutines. The get matrix
routine loads ASCII files containing floating point numbers into array variables.
The mvm routine multiplies a matrix and a vector. This routine uses the array
processor when compiled for the Optima 3 and is one of the most important
routines for implementing controllers.

band_white fir.c This routine generates a bandwidth limited white noise signal.
The routine uses the rand command to generate random short integers which
are summed to produce a Gaussian distribution. The resulting signal is then
filtered with a Finite Impulse Response (FIR) filter to limit the bandwidth to 50
Hz. If another cutoff is desired, another FIR filter could easily be designed using
MATLAB. The filter changes the RMS value of the signal. To compensate for
this, the standard deviation of the signal is calculated after filtering and then
corrected to the desired value.

sin.disturbance.c This routine generates a sinusoidal disturbance and has the same
form as band white fir.c

sin_sweep.c This routine generates a sinusoidal disturbance with a frequency which
“sweeps” over some user-specified frequency range. This routine is similar to
sindisturbance.c.

There is one more file, dummy main.c, which is used to get around a programming
problem with the A/D and D/A routines provided by Systolic. The A/D and D/A
routines apparently need to be aligned on 16-bit memory words instead of 8-bit mem-
ory words; if they are placed after other routines in memory, the compiler may not
align them correctly. In C, the main routine must appear first. To get around this,
a false or “dummy™ main is used in dummy main.c. This false main appears first in

memory, but merely calls the real main, contained in exp.c, which appears after the
A/D and D/A routines.
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Although the software may appear to be long, it is relatively straightforward. Com-
ments appear throughout the code. The major tasks performed by the software are,

1. Appropriate matrices are loaded from data files
. Memory is allocated for signal storage
. Disturbance signal is pre-calculated

. Sensor biases are checked (if controlling truss)

. RMS signal values calculated

2
3
4
5. Control/Simulation loop run
6
7. .m file written, containing report on the run
8

. .dat file written, containing various sampled data signals from truss

4.2.2 Computer Compatibility

The program is written in C, using several standard libraries and several special ones.
For most common operations, the standard std.1, stdio.h, and math.h libraries are
used. For matrix operations, the Mathpac routines provided by Systolic systems are
used. Systolic has also provided routines to read from the A/Ds, write to the D/As,
control the sampling period, and measure intervals of time. These routines are in an
object file, cvrti6.o.

The program is compiled on a Sun, but it can be compiled to run on three different
types of machines, using the following makefiles,

e Sun 3/50 or 3/60 — makefile
e Sun 3/260 — make_phonon

e Optima 3 — make.optima

Different versions of the std.l, stdio.h, and math.h libraries must be used when
compiling for the Optima, and these libraries have been provided by Systolic. The
Mathpac routines are also different, since they are written to run on the array pro-
cessor. Only a small number of Mathpac routines are available to run on the array
processor, namely vadd, vsub, vmul, vdiv, vsadd, vsmul, vmsa, and vsabs. These
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routines are in the library qc.1. It would be possible to run all of the Mathpac
routines on the Optima 3’s host processor at a reduced speed instead of the array
processor if the Mathpac source code was available.

Compiler directives are used to make the program compile with the correct libraries,
calls to subroutines, etc. For example, if the program is not compiled to run on the
Optima 3, the A/D and D/A routines are not included, since the Sun will not have
this capability. When changing from one machine to another, all of the program
object files must be erased. This will insure that all the files are recompiled to run
on the correct system. If this is not done, the linker will not be able to find all the
subroutines called.

4.2.3 Memory Usage and Allecation

The Optima 3 has two types of memory. There is 4 MB of main memory, which
can be accessed only through the host processor. This memory is used to store
the program and most of the variables. When running a C program on the host,
variables are automatically placed in this memory as well as locations reserved with
malloc and calloc. Unfortunately, there does not appear to be any way to check
how much memory is used. If too much is requested, the program crashes. The
executable program requires about 160 KB and memory is allocated for variables as
it is requested by the user. This limits the amount of memory the program actually
uses. Most of the memory is used to store the real-time signals measured during the
experiment. The amount of memory available for storing real-time signals from the
experiment allows at least 30 seconds of data at 10ms sampling. The usefulness of
this storage is limited, however, since the data link between the Optima 3 and Sun
host is slow. ‘

The second type of memory is on the array processor card. It is the only memory
that the array processor can read, although the host can read this memory also. This
memory must be allocated with the APalloc command, which returns a pointer to a
floating point number. All variables used in calculations on the array processor must
be stored in variables allocated in this manner. Only 32-bit, floating point numbers
may be used with the array processor.

4.2.4 Sampling Rate

The sampling rate of the controller is precisely controlled using the A/D and D/A
routines provided by Systolic. The sampling rate is set when the initialization routine
CVTINIT is run. The routine CVT_STRT starts the sampling rate timer. The first A/D
call and the first D/A call each start separate timers. When the software reaches
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Figure 4.1: Speed of a Matrix/Vector Multiplication using Optima 3’s Array Processor

the second A/D and D/A calls, the program waits until the proper time has elapsed
since the previous calls. The program will stop and print an appropriate messag. if
this sampling rate is exceeded. There is a two sampling period delay in the whole
closed-loop cycle.

When compiled to run on the Optima 3, the program makes use of the array processor
for matrix/vector multiplications and vector additions. For the multiplication, the
Mathpac routine vmsa is used. It performs the dot product of two vectors. Due to
the pipeline architecture of the array processor, this operation can be performed at
virtually the same speed, regardless of the size of the vectors. This routine is called
once for every row in the matrix, thus for square matrices, the speed of execution
will be proportional to the order, rather that the order squared. Figure 4.1 shows the
level of performance achieved.

It is easy to see that the matrix equations should be written with the smallest possible
number of rows in the equations. Diagonal matrices can be multiplied with one vmsa.

The program as written can sample the A/D, write to the D/A, store all the signals
and take care of all the other overhead in about 1.5 ms. A 14-state dynamic controller
can be implemented with a sampling period of 5 ms. Perhaps some work could be
done to reduce this.
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4.2.5 Output of the Software

The time response data generated in the program is written to a data file in buffered
binary output, which can be read directly by MATLAB. A MATLAB header is written
to the file before any data to configure the file as a MATLAB .mat file [94]. The
rate at which data points are written is selected by the user, thus the file size can be
controlled. Data are written to the file one data block at a time using the C command
furite. Using the fwrite command decreases the time required to upload data to
approximately one third to one fifth the time required using fprintf. The size of the
data blocks vary depending on the machine. The data written to the file may consist
of any of the following: the time of the sampling instant, eight sensor outputs, eight
controller outputs, nine mode displacements, force to shaker, disturbance signal and
the LOS pointing error. Usually, some subset of these signals are written to the file
because of th~ time required to upload the data. This file is placed in a subdirectory
called ./data.

In addition to the data file, a MATLAB command (.m file) file is written, containing
information about the run. This file, in addition to the data file, is intended to be
used with the post processor, which is described in Section 4.3. However, the .m also
gives a good report of the rms values of the sensor signals, which can be printed as a
record of the run or used for a quick analysis of the results.

4.2.6 Addition of New Controllers

If additional controllers are designed for the truss, whether by OSU or another party,
there is no need to write additional software. New controllers can be added to the
existing software relatively easily. Minimal knowledge of C programming is needed. A
good reference is [95], since it was used by Systolic Systems Inc. when they wrote the
C language routines for the Optima 3. It is also very helpful to read the documentation
files written by Systolic, found in /usr/download.

The controller should be written in matrix form, to enable use of the mvm and vadd
routines which run on the array processor. The constant matrices should be written
in ASCII files, one line per row (for readability only). Any format readable by the %£
option of the C command fscanf is acceptable, but it is advisable to use exponential
format and as many decimal places as possible. Each matrix should be in a separate
file. These files can be generated directly from CtrlC (using the command save var
>filename -r -c -f -(1x, 1p5e15.7) ) or MATLAB (using the command save,
then translate). If the controller is dynamic, it must be discretized for the sampling
period at which it is to be run before it is saved in these files.

The program needs modifications in the file exp . c only. It is easy to spot the necessary
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modifications, by studying the implementation of various controllers already coded.
Basically, there are five areas to modify:

1. Define pointers to new variables used in the control law, making sure they are
not already defined. The variables used may be the same as in other control
laws, since only one controller is run at a time, however, they cannot be defined
twice.

o

Add controller to main menu, giving it a controller number, which will be its
reference throughout the program.

3. Add a case to the switch statemen: that loads the controller files. Also, at this
point, memory for the constant matrices, controller states, and any temporary
variables is allocated. If the controller is dynamic, there may be a switch to
load controllers discretized at different sampling rates. The sign of any matrices
should be corrected so there are no subtractions in the matrix equations.

4. Similarly, a switch must be added to calculate the feedback signal in the control
loop. This relates the plant output vector y to the control vector u. If possible,
use the mvm and vadd routines only. Since these only have two operands and they
cannot be nested, temporary variables may need to be used. Also remember that
all of these variables must be allocated on the array processor using APalloc.

3. Add a case in the switch that prints the controller title to the .m file.

4.3 Post-Processor Routines

The post-processor is a menu driven plotting routine written especially for the sim-
ulation program in MATLAB command files. It is intended that anyone with even
minimal knowledge about MATLAB be able to run the post-processor. The post-
processor can bring information about the simulation from the C program and write
it on the plots, eliminating possible mix up of files.

Unfortunately, the low speed of the interface between the Optima 3 and the Sun
has severely limited the usefulness of this program. With a faster interface it would
be more useful. In any case, the following sections provide a short summary of its
capabilities.

4.3.1 Capabilities and Structure

The post-processor is menu driven, calling many individual subroutines for specific
tasks. It can graph actuator signals, sensor signals, fast Fourier transforms of sensor
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signals, pointing error and mode displacements. The user can view these graphs with
an option to print, or print them out directly. Menu options exist to plot groups of
graphs. Additional features could be added easily. A sample run of the post-processor
is shown in Figure 4.2.

>> Sim_1

>> pp
Post-Processor for 12 m Truss Simulations

1) View / Plot Actuator Signals

2) View / Plot Sensor Signals

3) View / Plot Actuator Power

4) View / Plot FFT of Semnsor Signals

§) View / Plot Mode Displacements

6) View / Plot RMS Pointing Error

7) Plot All Actuator Signals and Total Power
8) Plot All Sensor Signals

9) Plot All Actuator Signals and Semsor Signals
10) Plot All Mode Displacements

11) Plot Total Power and RMS Pointing Error
99) Exit to matlab - Load new data

Option 7 1
Enter Actuator # or a for all Actuators 1
.. Plotting

Do you want hardcopy ? (y/n) n

Figure 4.2: Sample Run of Post-Processor

Each graph is labeled with the parameters that are passed from the simulation pro-
gram. This is done by writing a file that will be executed by MATLAB as a command
(.m file). This file must be executed prior to running the post-processor routines, as
it also runs an initialization routine.

The program was originally written to plot all the sensor and actuator signals. It
is clear, however, that uploading all the channels will take an unacceptable length
of time. It may be useful to modify the control/simulation program to prompt the
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user for which channels are to be saved. This information could be passed to the
post-processor through the .m file.
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5. SYSTEM MODELING AND CONTROLLER DESIGN FOR
AFWAL TRUSS

The truss was modeled by WL and the model was given to OSU in the standard
FEM form, with no reduction of model order. The model was then transformed from
nodal coordinates to modal coordinates by simultaneously diagonalizing the mass and
stiffness matrices. The model order was then reduced using balanced model reduction
techniques as described in Sections 2.2.1 and 2.2.2. Controllers were then designed
in continuous time for the reduced order models then discretized for implementation
on the control computer. Designing the controllers in continuous time was desirable
since the sampling rate was not known at the time the controllers were designed.
Also, many of the design tools which were used were for continuous time systems. It
appears that the designs did not suffer much from this, since the sampling rates were
sufficiently high.

5.1 System Modeling

The FEM model of the truss was constructed using MSC/pal 2 software. The model
finally used was an equivalent beam representation of the truss. The stiffness prop-
erties of the beam were derived from a single bay of the truss. Using a single bay
limited the number of degrees of freedom yet allowed an accurate approximation of
the behavior of the truss for the lower frequency modes of interest. The beam model
divides the truss into 16 elements and was not difficult to match with open loop
testing of the truss. The full model has 33 nodes and 136 degrees of freedom.

The eight control actuators and single disturbance actuator are modeled as simple
springs, masses and damn.pers, as shown in Figure 5.1. They are constrained to move
in a single direction with respect to the reference frame. In actuality, they should
be constrained to move in one direction with respect to the truss; however, for small
deviations in the truss, it can be assumed that this is equivalent.

5.1.1 Modeling of Control Forces and Sensor Signals

Control forces were added to the FEM model considering the action of the proof mass
actuator. The force produced is not with resvect to a stationary reference frame, as
would be the case with a thruster or an actuator attached to the wall. A proof mass
actuator produces an equal and opposite force on the proof mass and the body of the
actuator, as indicated in Figure 5.1. Recall the FEM equation (2.20) is

Mi;+Di+Kz=Q (5.1)
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where
z — nodal states (displacements and velocities in each direction, at each node)
M — mass matrix (symmetric)
D — damping matrix (symmetric)
K — stiffness matrix (symmetric)
@ — generalized external forces applied to each node, in each direction

Define the input to the actuators to be u and the output of the velocity sensors to be
Yy, where the sensors are numbered as shown in Figure 5.2. The u and y are directly
related to the nodal states,

y=Cgz (5.2)
and

Q = Byu (5.3)
C, has as many rows as there are outputs, and B, as many columns as inputs.
For point sensors that senses velocity along a single coordinate axis, each row of
C, contains a 1 at the nodal state where the sensor is located, and the rest of the

elements in the row are zero. For momentum exchange actuators mounted along
a single coordinate axis, each column contains a +1 at the nodal state where the
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actuator is attached the truss, and a -1 at the nodal state of the proof mass. If
relative velocity sensors are used (such as the LVT sensors), it is clear that C, = BT.

5.1.2 Transformation from Nodal Coordinates to Modal Coordinates

The MSC/pal 2 software produces a FEM model with 272 nodal states. This model
is transformed from nodal coordinates to modal coordinates as discussed in Sec-
tion 2.2.1.

The FEM model produced by MSC/pal 2 software contains 10% damping in each
proof mass actuator mode due to LVT feedback, but includes no structural damping.
The structural damping is very light and hard to model. Dampings of 3% for the first
bending modes and 1% for all other structural modes are assumed. This damping is
added directly to the model in modal coordinates by letting

0 1

A=| -~ —¢TDg - 20,0 (5.4)

where (, is the diagonal matrix of damping ratios and § is the diagonal matrix of
squared modal frequencies.
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Table 5.1: Structural Modes and Dampings — Open Loop, 10% Actuator Damping
Controlled |l Uncontrolled

Mode Ist x [ Isty [ I1st T [ 2ndx { 2ndy || 3rdx | 3rdy | 2nd T | 4thx | 4thy [ 3d T
Frequency | 1.75 | 1.75 | 6.64 | 8.46 | 8.45 || 19.42 | 19.40 | 20.22 | 29.35 | 29.31 | 33.90
% Damping | 1.70 | 1.70 | 0.12 | 0.12 ] 0.12 | 0.04 | 0.04 | 0.04 | 6.02 | 0.02 | 0.02

Table 5.2: Structural Modes and Dampings — Open Loop, 50% Actuator Damping
Controlled Uncontrolled

Mode Ist x | Isty | 1st T | 2ndx | 2ndy || 3rdx | 3rdy | 2nd T | 4thx | 4thy [ 3rd T
Frequency | 1.67 | 1.67 | 6.64 | 8.44 | 8.45 || 19.09 | 19.42 | 20.22 | 29.31 | 29.35 | 33.90
% Damping | 6.32 | 6.33 | 1.08 | 1.07 | 1.07 || 067 ] 0.68 | 0.69 | 062 | 0.62 | 0.61

5.1.3 Model Order Reduction

The modal transformation described in the last section results in a system equal
in order to the FEM model, i.e. a model containing 136 modes. As predicted in
Section 2.2.2, this model has too many modes to be used for controller design and the
higher order modes are inaccurate. Therefore, the model was reduced as discussed
in Section 2.2.2. Two models were created, one containing 14 states and another
containing 42 states.

The controller designs for the truss were carried out using a 14-state model, including
5 structural modes and 2 actuator modes. A common problem with reduced order
controller designs is the destabilization of uncontrolled modes. To test for this con-
dition, the 42 state model was used as a higher order “truth” model to calculate
closed-loop damping and to simulate the response of the truss. This model included
11 structural modes and all 10 actuator modes (8 control actuator modes and 2 modes
to model the disturbance actuator which is oriented at a 45° angle to the 2 bending
directions). The frequencies and natural dampings of the structural modes included
in the truth model are shown in Table 5.1. The actuator modes are all approximately
1 Hz, with 10% damping.

Table 5.2 shows the frequencies and natural dampings of the structural modes in-
cluded in the truth model for the case of 50% actuator damping.

5.1.4 Effects of Discretization and Sampling Delay

In the simulation of the truss response, the plant was discretized and the discrete-
time response calculated. The discretized plant model and discrete-time simulations
produced very similar results to those of the continuous-time model and continuous-
time simulations. Thus, discretization did not present any problems.

However, a more serious problem was encounted with delay in the feedback loop.
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The Optima 3, due to the way in which the A/D and D/A cards function, has a
two sampling period delay between output and input. This delay was not taken into
account when the controllers were designed, although it is modeled in the simulation
routine. Several of the controllers have been destabilized, or nearly destabilized by
this delay.

5.2 Controller Design

5.2.1 Performance Requirement—Tip Pointing Error

Some measure of merit was needed to judge the performance of the controllers, as well
as actually design them. For this criterion, we chose to minimize the displacement of
a point at the tip of the truss (24 inches from the center). The light source is located
at this point, so the performance may be directly measured during experiments with
the optical sensor as a Line-of-Sight (LOS) error. The distance of this point from the
~enter of the truss was chosen to include the torsional modes of the truss.

The error term p can be written in terms of displacements of the top four sensors
(y1,¥2,ya and ys).

. 1 12 . 2 n 12 ., :
p? = [i(yl +y2) + = sin45°(y; — yz)] +[§(y4 +ys) + o sin45°(y4 — ys)] (5.5)

This can be rewgitten in matrix form —
Pt =yiQ'va (5.6)

where yq is the vector of displacements at the sensors,

3 & 0[(0 0 0[]0 0]
E B 010 0 0{0 0
0 0 0|0 O O0l0 O
,_ |0 0 0|8 € 0|00
Q= 0 0 0|& B 0]0 O (5.7)
0 0 0|0 O O|0 O
0 0 0/0 0 010 O
0 0 0;0 0 010 0
and
3= 2.932 A = 0.507 £ =-1.219 (5.8)
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Now, let
y= Cdz’ (59)

where Cjy is the output matrix yielding displacements at the sensor locations. This
implies

Pt =2TCTQ'Cyz = 27Qx (5.10)

This LOS error term was used in the design of optimal controllers.

5.2.2 Controller Design Techniques

This project presented the opportunity to test a wide variety of control techniques.
Most of these were based on the Linear Quadratic Regulator. The cost function
minimized in these techniques was

J =/o°° 7@z + uT Ru] at (5.11)

or some variation thereof. Most of the controllers were designed using the LOS
requirement described in the previous section as part of the cost criterion. The
inputs were usually weighted equally. Thus, we typically chose R = al, where a
is a proportionality constant used to control the ratio of the relative weighting of
the states to weighting of the inputs (which is equivalent to the performance/control
effort trade-off).

It should be noted that the limiting factor for closed-loop stability was typically travel
of the proof-masses on the control actuators. In the controller designs, the gains grew
larger as the states were weighted more heavily (or equivalently, the inputs weighted
less heavily) to increase performance. The gains grew larger which required more force
and, hence, further travel of the actuators. Eventually, a point was reached where the
high gains demanded the proof-masses of the control actuators to exceed the maxi-
mum possible travel. Due to the travel limitations of the proof-mass, nonlinearities
were introduced which resulted in instability.

Because the amount of travel required to create a given force decreases as the fre-
quency increases, more control authority is actually available for modes above the first
bending mode. Rather that using the LOS requirement in the cost function, these
higher-frequency modes could be weighted more heavily-thus increasing the perfor-
mance in the controlled higher-frequency modes. Although a few initial controllers
were designed using equally weighted states, we mainly used the LOS requirement in
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the cost function and did no ad hoc weighting in our designs. However, it should be
roted that our results could perhaps be improved with such ad hoc weighting.

All of the following design techniques have been discussed thoroughly in Section 2.3
and in other sources [96]; therefore, only a short description will be given here.

Linear Quadratic Gaussian (LQG)

This approach is the standard full state feedback, using a Kalman filter to estimate the
modal states [50]. The noise in each input and output is assumed to be uncorrelated
and equal, so W and V are proportional to the identity matrix. The relative levels
of these noises are unknown, so the relative weight is adjusted until the response of
the observer is satisfactory. This is achieved with 4W = V.

The Riccati equations were solved using MATLAB software {94]). If the weighting
matrix Q) was positive semi-definite, it was usually necessary to add a small number
to the diagonal for numerical stability.

Linear Quadratic Gaussian with Loop Transfer Recovery (LTR)

This approach combines the frequency domain and state space techniques for a min-
imal phase system and is very similar to the LQG design discussed above.

Centralized Optimal Output Feedback (COFB)

This design simply minimizes the cost function given in the decentralized case, except
there is no partitioning into subsystems. Again, DOLORES was used except in this
case it was allowed to vary all the terms in the gain matrix. The feedback is of the
form u = Ky, where K is not block diagonal.

Decentralized Optimal Output Feedback (DOFB)

This decentralized design is based on the following four groups of actuator/sensor
(input/output) pairs: {1,2,3}, {4,5,6}, {7} and {8}. The feedback is u = Ky where
K is 8 x 8, u is the control vector and y is the vector of sensor velocities. K is block
diagonal, where the blocks are 3 x 3,3 x 3,1 x 1 and 1 x 1. This design, like all the
other output feedback designs, was obtained with software called DOLORES which
was developed at OSU to solve the optimal output feedback problem [58, 97].
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Decentralized Frequency Shaping (DFS)

This design uses the same decentralized groups as the regular decentralized case.
The cost function, however, consists of the plant outputs rather than the states [59,
96, 98]. The weighting of the control outputs was related to frequency, in order to
discourage the controller from acting at high frequencies. The DOLORES software
also incorporates a feature to augment states to the system and design these frequency
shaping controllers. For first order filters, the resulting controller is an 8th order
dynamic controller of the form u = K,y + K,z where z = Fz + Gu. K; and K are
block diagonal, partitioned as in the decentralized case, and F and G are diagonal.

Overlapping Decomposition (OD)

This method divides the truss into six disjoint subsystems, with the actuator/sensor
(input/output) pairs grouped as {1,2}, {3}, {4,5}, {6}, {7} and {8}. Each subsystem
was minimized separately using DOLORES. The feedback is u = K'y where K is 8 x 8,
u is the control vector and y is the vector of sensor velocities. K is block diagonal,
where the blocks are 2 x 2,1 x1,2x2,1x1,1 x1and 1 x1.

Controlled Component Synthesis (CCS)

For CCS controller design, the full 136 degree of freedom FEM of the truss was
decomposed into two component models. The lower 10 bays comprised the lower
component which had 62 degrees of freedom. The upper 6 bays comprised the upper
component which had 80 degrees of freedom. These component models were formed
from the composite system model using the procedure discussed in Section 2.3.6 since
the composite model was available.

Modal decomposition was performed on the FEM of each component by solving the
appropriate eigenvalue problems for the component modes and modal frequencies.
For numerical reasons, the lower and upper component models were reduced to 20
and 44 degrees of freedom, respectively, using frequency truncation. At this stage, all
component modes below 100 Hz were retained. A state space model was then formed
using the modal states. Taking the sensor velocity measurements as the outputs and
the actuator signals as the inputs, the component models were further reduced based
on observability and controllability of the modes. The resulting models were used for
controller design.

Static optimal output feedback gains were found for each component so as to min-
imize motion at the internal boundary components (the one-half and three-quarter
stations). The motion at the tip was also weighted to meet additional performance
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objectives. A quadratic performance criterion as in Equation (2.110) was used for
the component controller designs. The resulting static output feedback control law
for each component was of the form

u = Kc,y. (5.12)

Optimal Projection (OP)

This approach uses stochastic modeling for the uncertainty of the system order to
improve the robustness with respect to the unmodeled higher frequency modes. The
controller is of the form u = KZ where £ = A.Z + Fy. The order of the controller is
predetermined—in this case ten.

Decoupled Optimal Projection (DOP)

This method is a decentralized version of optimal projection. The controller is essen-
tially the same, except three third order controllers run independently, one for each
bending direction and a third for the torsion.

H., Gap Metric Design

The goal in this method is to shape (/ — PC)~'P for disturbance attenuation and
C(I — PC)™ for shaping the control action required.! In this case, only the top four
actuators are used for control. The multivariable design is a centralized design with
the four sensor/actuator pairs as the inputs and outputs of the system.

A balanced truncation of the 42-state “truth-model” yields a suitable design model.
The balancing transformation and truncation are performed with the algorithms dis-
cussed previously. The resulting design model from has 14 states corresponding to
the first five structural modes and two actuator modes. The gap calculated between
the modal truncated model and the balanced truncated model was found to be 0.02.
The difference between the two models is primarily due to the actuator modes. Since
actuator modes need to be considered for stability of the system, one might ques-
tion whether or not two modes are enough. To answer this question, both reduced
models were compared to a 30 state model which contained the same five structural
modes and all 10 actuator modes. The gap between either reduced model and the 30
state model was found to be around 0.09. This value was judged to be acceptable;
therefore, a fourteen state model seemed appropriate for design.

"This portion of work was performed by Scott Buddie.
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The weighting function Wp = kW is applied to each channel. For the constant weight,
W is set equal to I and k is varied to see what happens to the resulting closed loop
system. Initially, k was set to I to get an initial indication of the closed loop responses.
By doing this, the modes were shifted by what appeared to be an excessive amount.
After some additional trials, an acceptable range of k was found. The controllers
were calculated using the four-block solution of Englehart and Smith [89] for reasons
stated later. Therefore, b,,; was found from the four-block solution.

In case the 14-state controller could not be implemented at the desired sampling
rate, controller reduction schemes were employed to generate 12-state controllers.
An upper bound for the weighted controller gap between the full and reduced order
compensators can be found by taking twice the sum of neglected singular values of the
product of the controllability and observability matrices. This controller gap comes
out to be about 0.16 for £ = 0.5.

Since the optimal controller algorithm was causing the truth model to become un-
stable, we looked at introducing a first order weighting function to reduce control
action in the higher frequency modes. In this multivariable case, we will introduce
the first order weight into each of the channels; thus, creating a weighting function
with 4 states. This tells us that a full order controller using this weighting scheme will
consist of 21 or 22 states depending on the algorithm chosen. In this case, we have
decided to use the optimal controller algorithm to see if the truth model could now be
stabilized. The controller is reduced to 15 states for simulation and implementation.
Two first order weights are chosen. The frequency chosen as the roll-off frequency
was 7.162 Hz (45 rad/sec). This was chosen somewhat arbitrarily to give a little less
weighting to the torsional mode and the 2nd x and y mode. The frequency could be
shifted depending on the weighting desired. The difference in the first order weights
is due to a constant term.

The controllers are discretized at a sampling period of 5 ms. This was determined
to be a sufficient amount of time to process the control law and was fast enough in
terms of the modes of the system that were looked at. In the implementation of these
controllers, there is a two sampling period delay due to the A/D and D/A boards
as mentioned in Section 4.2.4. This delay could cause our closed loop system to go
unstable. The delay is of the form e’T where T is 10 ms and w corresponds to a modal
frequency. Therefore, the higher the modal frequency, the greater the phase shift that
occurs. To investigate this, the exponential is modeled by the function }—% The
function is then augmented to the plant and the eigenvalues of the closed loop system
are compared to the eigenvalues of the plant without delay. The eigenvalues in zll
cases were hardly affected by the delay; therefore, controllers were designed for the
plant—without the delay being considered. If the delay was determined to cause a
problem, then one could augment the plant with a delay function and do the design
based on the augmented plant.
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5.2.3 Output Feedback and Actuator Damping

Through the course of the designing controllers, it was realized that there is a strong
relation between the addition of structural damping and actuator damping. As more
damping is added to the structural modes, the actuator modes become more lightly
damped. This can be seen in the root locus for constant feedback of a single sensor
and actuator pair. The structural and actuator modes move in different directions as
the feedback is increased. This is true since the proof mass actuator gives the proof
mass and the truss equal and opposite forces, and only the velocities of the truss are
available for feedback.

There are at least two solutions. One solution is to feed back the velocities of the proof
masses in addition to the velocities of the truss, or perhaps only the relative velocities.
This could be done using the LVT sensors. There is another solution, however, which
is simply to increase the natural damping of the actuator modes. Much more damping
can be added to the structural modes before the actuator modes approach the jw axis
and, thus, instability.
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6. SIMULATION AND EXPERIMENTAL RESULTS

In this chapter, results of the experiments on the truss are presented. In general, we
have shown that the experimental behavior of the truss is very similar to the simulated
behavior of the model, both in open and closed loop testing. Several controllers were
tested using various inputs. Although some of these controllers did not adequately
stabilize the truss, the results typically coincide with predicted behavior. As the H,
controller designs differ considerably from the LQR-based designs, the Ho, results
will be presented in a separate section from the other results.

6.1 Noise Levels of Velocity Signals

The level of noise in the velocity signals presents one of the first problems encountered
in this experiment. As mentioned in Chapter 3, the signals from each accelerometer
are integrated to provide velocity measurements using analog circuits built into the
current drivers for each actuator. The analog circuit has a cutoff at 0.1 Hz, and zero
gain at DC. Therefore, the frequency response achieves maximum magnitude at 0.1
Hz and rolis off at -20 dB/decade as the frequency increases. The noise from the
accelerometers is assumed to be white, however, the integrators tend to amplify the
low frequency noise to the point where it could be a problem.

Table 6.1 shows typical noise levels. These data were gathered through the Optima 3
while the truss was at rest and represent the A/D noise, noise in the integrator, and
noise in the acceleration signal. The low frequency noise does not seem to cause signif-
icant problems for the controllers. Any noise which passes through the controllers is
attenuated by the truss. The main problem which is caused by the noise is difficulty
in measuring the performance of the truss, especially in terms of the steady-state
velocity RMS values.

Obviously, reducing the noise in the signals would improve the quality of the data.
Reducing the noise, however, would have required redesigning the integrators, which
would have been costly and undesirable. Another option was to increase the dis-
turbance signal to the truss. This was tried and achieved some measure of success.
Perhaps the best long term solution would be to avoid using integrators which by
nature amplify low frequency noise.

Table 6.1: Typical RMS Noise Levels of Velocity Signals (inch/s)

(Sensor [ #1 | #2 [ #3 [ #4 [ #5 [#6 [#7 | #8 |
[Velocity J] 0.019 | 0.014 | 0.048 | 0.018 ] 0.020 | 0.030 [ 0.021 | 0.035 |
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Figure 6.1: Bode Plot of Shaker with Voltage Drive
6.2 Disturbance Generation

As previously discussed, the truss can be excited from either the disturbance actuator
which is mounted on the truss, or the shaker which is mounted to the wall and
connected to the tip of the truss. Each of these disturbance generators presents
advantages and disadvantages.

The disturbance actuator was limited in both the travel of the proof mass and the
maximum force generated. The natural damping of the disturbance actuator could be
increased to reduce the travel of the proof mass, but this would also change the model
of the truss slightly. Even if the natural damping was increased, the maximum force
which the actuator could achieve would still pose a problem, especially with random
signals. The maximum output of the D/A converter was £10 V which converts to
£1 lb. Thus, the RMS output of a random signal was limited to less that 0.4 Ib. The
maximum D/A output was indeed the limiting factor in determining the maximum
force, not the power amp or the actuator coil. This problem could be solved by
amplifying the analog signal, but a suitable amplifier could not be found.

The second disturbance generating alternative is the shaker mounted to the wall
near the tip of the truss. This device has the potential to impart a much larger
disturbance force to the truss, although the travel of the tip of the truss is limited to
1 inch peak-to-peak. At first, a voltage source was used to drive the shaker. This c¢id
not perform well at the resonant frequencies of the truss. Figure 6.1 shows the Bode
plot of the shaker, from the voltage command to the output force, measured by the
force gauge at the end of the shaker arm. The dips in the transfer function at the
resonant frequencies are caused by the back EMF of the shaker. Driving the shaker
with a current source eliminated this problem. The current driver for the disturbance
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Figure 6.2: Bode Plot of Shaker with Current Drive

actuator was used to drive the shaker, and this appears to have worked moderately
well, as shown by Figure 6.2. The response at low frequencies, however, remains a
problem. Generating larger forces at lower frequencies would require more travel of
the shaker arm. At the first bending mode, we can see that the output of the shaker is
about 71% of the output at higher frequencies. This is due to the poor low frequency
response of the shaker. In theory, this response should be flat. This shortcoming is
magnified because most of the response of the truss is due to the first bending modes.
This problem explains why some of the data do not match the simulations well as
would be expected.

Perhaps the low frequency problems with the shaker could be corrected by prefiltering
the disturbance signal with a filter having a transfer function which is approximately
equal to the inverse transfer function of the shaker over the frequency range of in-
terest. The filter could be constructed by curve fitting the desired transfer function
over the frequency range of interest and using several MATLAB tools which would
make this design easy. For example, the command yulewalk could provide a good
approximation. Also, a model of the shaker could be determined and included in the
simulations.

Another solution to this problem is to find a shaker that has a better low frequency
response.

As previously discussed in Chapter 4, the disturbance signal is generated in the con-
trol/simulation program. Figure 6.3 shows the spectrum of this signal leaving the
D/A as recorded witk the OnoSokki. We chose to bandlimit the signal to 50 Hz
which allows us to put more energy into the frequencies which contribute most to
actually exciting the truss. This frequency range also includes several uncontrolled
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modes, so the results would allow the controllers to be tested for susceptability to
spillover.

6.3 Bode Plots

Bode plots of the structure can be generated relatively easily, using the OnoSokki dual
channel spectrum frequency analyzer. The OnoSokki obtains both the magnitude and
phase of the transfer function by taking the Fast Fourier Transform (FFT) of the input
and output, and then dividing each frequency point. This process is repeated and
averaged to obtain a smoother plot. The lower the frequency range, the longer it
takes to obtain a smooth plot. For 0-50 Hz, a good plot can be obtained in about one
minute. For 0-10 Hz, at least three minutes is necessary. This presents no problem
for the control program, so long as the data are not stored in the Optima 3 for the
entire length of the experiment.

Bode plots are also easily obtained from the data which are uploaded from the Optima
3 to the Sun Workstation. A MATLAB routine is used which implements basically
the same method as the OnoSokki. The experiments were performed for more than
164 seconds to provide 16,384 data points per channel per experiment. These time
data were used to compute 4096-point FFT’s for 15 windows with 50% overlap. A
Hanning window was used when computing the FFT’s of each window. The frequency
responses were calculated by taking the ratio of the FFT of the output to the FFT
of the input. The resulting 15 responses were then averaged together to create a
smoother plot.

Open loop plots for both experimental and simulated responses are shown in Fig-
ure 6.4. Agreement between the experimental and simulated results will be discussed
in the next section. Only Bode plots for the first sensor output with respect to the
disturbance input are shown. The Bode plots of other sensor outputs are very sim-
ilar. Note that bending modes in the z and y directions are at virtually the same
frequencies due to the symmetry of the truss.

Closed-loop Bode plots of the truss with several different controllers are shown in
Figures 6.5 through 6.9. Each Bode plot shows the experimental and simulation
magnitude comparisons. Figure 6.9 compares the closed loop frequency responses
with the open loop response from experimental data. The differences between the
closed loop responses can be hard to see, thus only a few are included. These Bode
plots are perhaps not the best way to compare the controllers as the controllers were
designed to minimize the motion of the point light source. The actual cost criteria
which were minimized for the various controllers are, in some cases, theoretically and
fundamentally different even though the objective of each controller design is the
same. Regardless, these responses do provide significart insight.
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Figure 6.5: Comparison of Experimental and Simulation DOFB Frequency Responses,
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Figure 6.6: Comparison of Experimental and Simulation COFB Frequency Responses,
Velocity #1, Shaker 1-1b RMS Random
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Figure 6.7: Comparison of Experimental and Simulation Overlapping Decomposition
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Figure 6.8: Comparison of Experimental and Simulation Controlled Component Syn-
thesis Frequency Responses, Velocity #1, Shaker 1-Ib RMS Random

Figure 6.9: Comparison of Experimental Frequency Responses for Several Controllers,
Velocity #1, Shaker 1-lb RMS Random
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Frequency responses of the light source position from the disturbance input to the

LOS sensors have also been generated from both experimental and simulated data.

When the experimental data were taken, the gain of the amplifier for the photo array

signals from the optical sensor was set incorrectly. Therefore, the amplitudes of the

time response data were off by a factor of 10. Knowing the source of this error, the .
data were post-processed by multiplying the time signal by 10 or, equivalently, by

adding 20 dB to the frequency response to give the correct results.
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Figure 6.10: Comparison of Experimental and Simulation Open-Loop LOS Frequency
Responses, LOS z, Shaker 1-1b RMS Random
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Figure 6.14: Comparison of Experimental and Simulation Controlled Component
Synthesis LOS Frequency Responses, LOS z, Shaker 1-lb RMS Random
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Figures 6.10 through 6.14 compare the corrected experimental frequency responses of
the LOS position in the z direction with the responses from simulation. Note that
these frequency responses match very closely at the modal frequencies. Figure 6.15
compares the closed loop frequency responses and the open loop response from sim-
ulated data. The simulated data were used because the responses are smoother than
the experimental responses and thus show the added damping more clearly. From
Figures 6.10 through 6.14, one can see that the added damping shown here is es-
sentially equivalent to the added damping from the experimental data. Again, the
differences between the closed loop responses can be hard to see, thus only a few are
included.

One problem with the post-processing technique described above is evident in these
responses. Although the post-processing corrected the signal, it also amplified the
noise to levels the noise never actually achieved. This is evident in the experimental
responses where we see a noise floor of about -60 dB. It is assumed the actual noise
present in the frequency response is due to the noise in the photo array or resolu-
tion (quantization) of the photo array and not due to the amplifier itself. If this is
indeed the case, then had the amplifier been set correctly, the noise floor would have
been about -80 dB. Thus, the frequency responses generated with the post-processed
(corrected) data do not accurately depict the true noise floor.

6.4 RMS Velocities

The link between the Optima 3 and the Sun Workstation is very slow and the amount
of data that can be uploaded is therefore limited. The RMS values of the sensor and
actuator signals are very useful for evaluating controller performance and can be
uploaded in less than ten seconds.

Table 6.2 shows the RMS sensor velocities and actuator power measured experimen-
tally, with a 1-lb RMS random disturbance from the shaker. The last column is the
total RMS of all the actuator signals. These data were taken for 164 seconds after
the truss was allowed to reach steady state for 30 seconds. The same random number
generator seed was used for all experimental trials.

Table 6.3 shows the simulated sensor velocities and actuator power for the same
controllers. The simulation results are similar to the experimental results.

6.5 Modal Damping

One of the simplest yet perhaps most meaningful way to evaluate controller for a
[.SS is to compute the closed-loop damping. This provides a good indication of the
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Table 6.2: Experimental RMS Sensor Velocities and Actuator Power for Random
Disturbance, 1-lb RMS

type | # | #1 | #2 | #3 [ #4 [ #5 | #6 | #7 | #8 | Power |
Open 11/0.295]0.274 | 0.198 [ 0.261 | 0.261 | 0.176 | 0.168 | 0.178 || — !
DOFB || 2 || 0.124 | 0.122 | 0.092 | 0.125 | 0.141 | 0.135 | 0.064 | 0.080 || 0.659
COFB || 31 0.130 | 0.125 | 0.105 | 0.130 | 0.136 | 0.134 | 0.077 | 0.100 || 0.596
1
5

OD 0.137 | 0.136 | 0.123 | 0.124 | 0.142 | 0.123 | 0.088 | 0.138 || 0.408
CCS 0.144 1 0.136 | 0.101 | 0.164 | 0.149 | 0.146 { 0.076 | 0.106 || 0.503

Table 6.3: Simulated RMS Sensor Velocities and Actuator Power for Random Dis-
turbance, 1-1lb RMS

Ltype N # (| #1 [#2 |#3 [#4 [#5 |[#6 [#7 [#8 [/ Power |

Open 1} 0.259 | 0.268 | 0.146 | 0.260 | 0.264 | 0.139 | 0.153 | 0.156

DOFB || 2 |[ 0.138 ] 0.126 | 0.092 | 0.126 | 0.141 | 0.092 | 0.077 | 0.080 J| 0.776
COFB || 3 { 0.139 | 0.127 | 0.093 | 0.129 | 0.144 | 0.098 | 0.075 | 9.079 || 0.729
oD 411 0.154 ] 0.144 | 0.102 | 0.143 | 0.155 | 0.100 | 0.101 | 0.103 }j 0.517
CCS 5 || 0.154 | 0.150 | 0.099 | 0.157 { 0.163 | 0.101 [ 0.090 | 0.098 || 0.543

performance level a controller will achieve. The damping ratios for each controller
were calculated using the 42 state model, including the first 11 modes as well as the
10 actuator modes. This was done in continuous-time, with no delay in the feedback
loop.

For each type of controller listed in Section 5.2, several controllers were designed at
various times throughout the project with various weighting matrices. Every type
of controller designed has been implemented in the software, however, only some of
them are presented here.

Controllers were designed using the pointing requirement derived in Section 5.2. The
relative weighting of the @@ and R matrices was adjusted so the damping in the first
mode was about 17%. This represents the most damping that could be added to the
truss using output feedback with 10% actuator damping. If the relative weighting on
the matrix R is reduced any further, the damping remains about the same and insta-
bility is approached as discussed in Section 5.2.2. The actuator modes become very
lightly damped which increases the cost faster than adding damping to the structural
modes decreases the cost. The closed loop damping ratios for these controllers are
shown in Table 6.4. The actuator damping column is the lowest damping of all the
actuator modes.
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Table 6.4: Simulation Closed Loop Damping Ratios (in %) — Minimized For Pointing
Requirement, 10% Actuator Dampin

{Control Type | 1st x | Isty | 1st T | 2ndx | 2ndy || 3rdx | 3rdy | 2nd T | Actuators |
OL 1.70 | 1.70 0.42 0.42 0.42 0.34 0.34 0.34 9.10
DOFB 11.49 | 11.65 | 6.10 2.34 2.35 0.91 0.91 2.18 3.35
COFB 10.12 | 10.38 | 6.78 2.62 2.56 0.65 0.65 2.40 4.07
OD 10.12 | 10.38 | 6.78 2.62 2.56 0.65 0.65 2.40 4.07
CCS 10.12 | 10.38 | 6.78 2.62 2.56 0.65 0.65 2.40 4.07

Table 6.5: Simulation Closed Loop Damping Ratios — Minimized For Pointing Re-

quirement, 50% Actuator Dampin
[[Control Type | # [1stx [ 1sty | 1s¢t T [ 2ndx [ 2ndy [[ 3rdx [ 3rdy | 2nd T | Actuators |

OL 1| 6.32 6.32 1.08 1.07 1.07 0.67 0.68 0.69 49.35
DOFB 2] 16.16 | 17.13 | 19.73 | 4.88 5.08 1.61 1.68 6.56 50.17
COFB 3] 17.24 | 18.59 | 16.34 | 6.20 6.79 1.36 1.48 5.39 47.40
oD 4 | 18.09 | 18.13 | 17.13 | 2.72 2.72 1.23 1.23 5.76 48.91
cCS 5 | 14.76 | '17.95 | 8.12 3.03 3.58 1.28 1.49 3.03 47.89

A second group of controllers were designed which were intended to illustrate how
additional damping could be achieved by increasing the natural damping of the ac-
tuator modes. Damping can be adced to the actuators by increasing the gains of the
LVT feedback loops, which are adjusted by a 10 turn calibrated dial of the front panel
of the actuator power drivers. An actuator damping of 50% was chosen. The open
loop structural damping with 50% actuator damping changes, since there is coupling
between the actuator modes and the structural modes. As mentioned above, the
damping ratios of the closed-loop actuator modes decrease as the damping ratios of
the structural modes increase. By adding more damping to the open-loop actuator
modes, more damping may be added to structural modes of the closed-loop system.
The closed loop damping ratios for these controllers are shown in Table 6.5 and may
be compared with the open loop damping ratios.

Attempts were made to estimate the experimental damping ratios from the transfer
function data using a circle-fit damping estimation technique. Unfortunately, the
results were very sporadic and varied tremendously for various data “windows” to
which circles were fitted. For example, when estimating the damping of the first
bending mode for the DOFB controller, two separate attempts from the same trans-
fer {unction data (different windows) yielded estimates of 12% and 36% damping.
These variations between data windows may be related to how well the circles fit the
data. With such wide variation in the results, these experimental damping estimation
attempts were abandoned.
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Figure 6.16: Typical Sinusoidal Disturbance Signal, 0.2-1b RMS 1.75 Hz
6.6 Time Responses

Time responses are well suited for examining the transient responses of the truss.
Initial responses were taken by applying the disturbance and control simultaneously.
Decay responses were obtained by disturbing the controlled truss for 30 seconds, then
removing the disturbance while the control remained on.

The damping of each mode can be examined by applying a single frequency sinusoid
disturbance to the truss. Figure 6.16 shows the 1.75 Hz signal used in the initial
responses (Figures 6.17 and 6.18) and the decay responses (Figures 6.19 through 6.20).
The time constants of the exponential rising and falling envelopes do not appear to
be the same. The reason for this is not known. It may involve friction in the actuator.
Note that these responses were generated with 10% actuator damping and controllers
designed for that configuration. Therefore, the attenuation and damping ratios do

not match with the discussions from previous sections where actuator damping ratios
were 50%.

6.7 H, Gap Metric Design Results

The H., Gap Metric Design experiments addressed different issues than the LQR-
based techniques as discussed in Sections 2.3 and 5.2.2. Therefore, we present these
results separately.!

Table 6.6 shows the damping ratios of the controlled modes for the controllers designed

"This portion of work was performed by Scott Buddie.
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Figure 6.17: Initial Response - Open Loop, Velocity #1, 0.2-1b RMS 1.75-Hz Source
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Figure 6.18: Initial Response - DOFB #2, Velocity #1, 0.2-1b RMS 1.75-Hz Source 1
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Figure 6.20: Decay Response - DOFB #2, Velocity #1, 0.2-]1b RMS 1.75-Hz Source }
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Table 6.6: Damping Ratios of Structural Modes, b,,;, and Weighted Gaps for Hy,
Designs

k f % Damping [ bopc | Weighted
Mode ([ 1stx | 1sty [ 1st T [ 2nd x [ 2nd y || Gap
Frequency(Hz) [ 1.66 | 1.66 | 6.64 | 8.45 | 8.44 |
Open Loop — 6.3 6.3 1.1 1.1 1.1 — —
Constant 0.333 16.14 [ 16.14 | 2.78 | 1.78 | 1.78 || 0.7756 | 0.7761
Weight 0.4 18.93 [ 18.93 ] 326 | 1.89 | 1.89 || 0.745 | 0.82
0.5 2321 [ 2321 399 | 2.39 | 2.39 || 0.709 | 0.88
First Order 9:3%0.04445) 11 15.80 | 15.80 | 2.18 | 142 | 142 || 0779 | 0.0
Weight (233 0) 112268 [ 2268 3.11 | 1.76 | 1.76 || 0.712 0.55
Second Order || S350-e458) ,;;‘n; 22.04 | 22.06 | 6.70 | 4.60 | 4.60 | 0.699 | 0.370
: :! 65(0.15452
Weight .5500.1s452) 1l 95.53 | 25.55 | 8.55 | 6.04 | 6.04 || 0.655 | 0.446

with the given weighting function. Only the modes which the controller was designed
to control are shown. Table 6.6 also shows the calculated values of b,,; and the
weighted gap between the design model and the truth model of the plant. From
this table, we can see that for the case of constant weighting, the damping ratios of
the modes increase, the optimal robustness radius decreases, and the weighted gap
between the design model and the truth model increases as the constant value k is
increased. At k = 0.333, the values of the weighted gap and b, are just about equal
to each other.

In addition, closed loop stability of the truth model is checked and verified. This
differs from the case of the optimal controller. The damping values of the controlled
modes are similar using the optimal controller; however, the truth model was desta-
bilized. This is why the four-block solution is employed for the constant weighting
function as discussed in Section 5.2.2.

By using the first order weighting scheme, the optimal robustness radius increases
very slightly and the weighted plant gap decreases by a considerable amount. This
agrees with intuition because we are de-emphasizing control at the higher frequencies.
Note that the damping ratios have decreased from the constant weighting case in the
structural modes as expected. In addition, closed loop stability was checked with the
truth model. For these controllers, the truth model was stable.

In the previous designs, a large increase in damping is evident in the first x and y
bending modes without much of an increase in the damping of the torsional mode or
second bending modes. We would like to increase the damping in the torsional mode
by increasing the magnitude of the weighting function in the frequency range around
the torsional mode. By introducing the second order weighting functions shown in
Table 6.6, the damping of the first torsional mode and the second bending modes
increase because they are penalized more heavily. This second order weight is applied
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to each 1/0 pair; thus, introducing a weighting function of eight states. Therefore, the
optimal controller algorithm yields a dynamic controller with 29 states. Controller
reduction yields a 21-state controller for simulation and implementation. Table 6.6
shows the resulting damping ratios and the values of b,,; and the weighted gaps. It
should be noted that the damping ratios for the first six uncontrolled modes were
also calculated for each controller design. The damping ratios for these uncontrolled
modes were essentially the same in the presence of the controllers as they were for
the open loop case.

Bode plots for constant weighting with k = 0.5 and for the two second order weighting
cases are shown in Figures 6.21 to 6.23. These plots show the frequency response of
the first sensor output velocity with respect to the disturbance input force. The Bode
plots of other sensor outputs are very similar.

Magnitude (dB)

s 10 15 20 25 30 35 40 45 50
Frequency (Hz)
Figure 6.21: Comparison of Experimental Open Loop and Closed Loop Frequency

Responses for Constant Weight H,, Design, k = 0.5, Velocity #1, Shaker 1-1b RMS
Random
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Magoitude (dB)

5 10 15 .20 25 30 35 40 45 50
Frequency (Hz)

Figure 6.22: Comparison of Experimental Open Loop and Clzosed Loop Frequency
Responses for Second-Order Weight H,, Design, k = %, Velocity #1, Shaker
I-Ib RMS Random

Magnitude (dB)

s 10 15 20 25 » 35 40 45 50
Frequency (Hz)

Figure 6.23: Comparison of Experimental Open Loop and Closed Loop Frequency
2
Responses for Second-Order Weight H,, Design, k = 0.65(0.1s452)7 Velocity #1, Shaker

32426342704
I-1b RMS Random
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7. CONCLUSIONS AND RECOMMENDATIONS

This report has been an overview of a fairly extensive study on applying different
control techniques on a cantilevered truss structure for active vibration damping. A
number of of standard issues in the general area of active control of large flexible
structures have been considered. These include

1. Modeling

2. Model Reduction

3. Actuator Dynamics

4. Performance Specjfication

5. Implementation Constraints -

(a) Computational Delays

(b) Actuator Locations

(c) Sensor Locations

(d) Bandwidth and Authority Limits
(e) Unmodeled Dynamics

(f) Unknown Parameters
6. Selection of Control Approach

7. Computation of Feedback Gains

Again, as stated above, these are the issues that any control designer faced with a
large flexible structure will encounter.

On the other hand, the truss structure under consideration was a fairly simple problem
for control due to the following facts:

e The behavior of the structure was quite similar to that of a beam.

e Bending vibrations along the both axes and the torsional vibrations were fairly
uncoupled.

o The vibrational frequencies (along each axis) were not close enough to create
major problems in controller design.
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These simplifying aspects notwithstanding, we believe the experimental structure
with the multiple actuators and sensors and the computer system provides a very
successful testbed and furthermore has provided both the OSU Group and the WL
researchers a unique learning experience that is invaluable for work on other large
flexible structure problems.

As discussed in the preceding pages a number of different control approaches were
anaiyzed both in simulation and in implementation on the truss. These were:

1. Linear Quadratic Gaussian (LQG)

2. Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR)
3. Centralized Optimal Output Feedback

1. Decentralized Optimal Output Feedback

5. Decentralized Frequency Shaping

6. Overlapping Decomposition (OD)

7. Controlled Component Synthesis (CCS)

8. Maximum Entropy/Optimal Projection (MEQP)

9. Decoupled Optimal Projection (DOP)

0. H,, Gap Metric Design

Each one of the approaches implemented was successful in vibration damping. It
has to be understood that control design approaches are based on specific criteria
such as minimizing energy, or specifying closed loop pole locations or, reducing effects
of parameter variations, or rejecting high frequency effects, or adapting behavior to
emulate specified dynamics. Thus one cannot and should not compare these designs
on a single criterion, and we have not attempted to do so. Indeed, we have attempted
to also consider approaches that have computational and conceptual advantages when
they are to be used on more complex structures than the truss configuration here.
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A. Sample Run of Control/Simulation Program

Integrated accelerometer or LVT feedback (a/l) ? a

Control of 12m Truss Response
Ohio State University

Minimum sampling times are given in parenthesis
Active controllers must be run at this sampling time

Actuator damping at 50%

1) Open Loop Response
Designs Minimized for Pointing Requirement - Cheap Control

2) Decentralized Optimal Output Feedback (2ms)
3) Centralized Optimal Output Feedback (2ms)
4) Overlapping Decomposition (2ms)
§) Controlled Component Synthesis (2ms)
6) LVT Decentralized Optimal Output Feedback (2ms)
7) LVT Centralized Optimal Output Feedback (2ms)
8) LVT Overlapping Decomposition (2ms)

Designs Minimized for Pointing Requirement - Medium Damping
10) Decentralized Optimal Output Feedback (2ms)
11) Centralized Optimal Output Feedback (2ms)
12) Overlapping Decomposition (2ms)
13) LVT Decentralized Optimal Output Feedback (2ms)
14) LVT Centralized Optimal Output Feedback (2ms)

Designs Minimized for Pointing Requirement - Light Damping
15) Decentralized Optimal Output Feedback (2ms)
16) Centralized Optimal Output Feedback (2ms)
17) Overlapping Decomposition (2ms)
18) Controlled Component Synthesis (2ms)

Designs Based on Weighted Gap Metric
20) Full Order with Constant Weights (5ms)
21) Reduced Order with Constant Weights (6ms)
22) First Order Weight - Heavy Damping
23) Second Order Weight
24) Smith & Georgiou Constant Weight (Ems)
26) Smith & Georgiou Second Order Light (5as)
26) Smith & Georgiou Second Order Medium (Ems)
27) Smith & Georgiou Second Order Heavy (Ems)

Actuator damping at 10%
30) Open Loop Response

Choose type of control (1-30) 1
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)

Control truss or simulate (c/s) 7 s
Enter sampling rate in milliseconds 2
Enter data recording period in milliseconds (multiple of sampling rate) 10

Disturbance Sources
1) Disturbance actuator mounted on truss
2) Shaker mounted on wall

Choose type of disturbance excitation (1-2) 2

.. Loading Model Files
... getting ./matrices/c_42.dat

. getting ./matrices/cd_42.dat

. getting ./matrices/ctravel42.dat

. Loading Controller Files and Discretizing

.. Loading Model with §0% Actuator damping

. getting ./matrices/a_42_a50_d2.dat

. getting ./matrices/bsw_42_a50_d2.dat

Enter length of time in seconds for data recording 10
Number of recorded data points is 1000
Is this OK ? (y/n) y
Enter delay in seconds before beginning recording 0
Enter length of time in seconds to control truss i1

Disturbance Signals

1) Bandwidth Limited Gaussian White Noise

2) Sinusoidal at one frequency

3) Sinusoidal Sweep

4) Burst of Bandwidth Limited Gaussian White Noise
5) Burst of Sinuscidal at one frequency

Which type of disturbance? (1-5) 1
Enter RMS value of disturbance i
Cutoff is 50Hz
. computing disturbance signal
. getting ./disturbance_filters/fir50_2.dat
corrected mean is -0.000117
corrected std is 1.000000
Enter filename with no extension for data (will be put in ./data/ ) tmp
Simulation Loop Running
§% Complete
.. 10% Complete
.. 20% Complete
.. 50% Complete
. 80% Complete
. uploading .m File
. opening data file

RMS pointing error is 0.019642
RMS Force is 1.010897
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RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS
RMS

of
of
of
of
of
ot
of
of
ot
of
of
of
of
of
of
of
of

total actuator
actuator #1 is
actuator #2 is
actuator #3 is
actuator #4 is
actuator #5 is
actuator
actuator #7 is
actuator #8 is 0.

#8 is

OO0 0000 O

00000

velocity at sensor #1
velocity at sensor #2
at sensor #3
at sensor #4
at sensor #5
velocity at sensor #6
velocity at sensor #7
velocity at sensor #8
of actuator #1

velocity
velocity
velocity

Maximum travel
Maximum travel
Maximum travel
Maximum travel
Maximum travel
Maximum travel
Maximum travel
Maximum travel
Maximum travel

.m file

is in

of actuator #2
of actuator #3
of actuator #4
of actuator #5
of actuator #6
of actuator #7
of actuator #8
of actuator #9

./data/

. uploading data

writing 0
writing O
uriting 0
writing 0
vriting O
writing 0
writing 0
writing 0
writing O
writing O
writing 0

buffers:
buffers:
buffers:
buffers:
buffers:
buffers:
buffers:
buffers:
buffers:
buffers:
buffers: .

.mat file is in ./data/

done

% U.8. Government Printing Office: 199%—750-113/80103

0
0
0

0
0
0
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

OO0 00000 Oo

signal is 0.000000
.000000
.00000
. 00000
.00000
.000000
.00000
.00000

.248130
. 254297
.138079
.246013
.253500
.130227
.153854
.157063

©CO0O 0000000

.040370
.043281
.026063
.043110
. 040240
.025659
.014906
.014914
.055187

or
or
or
or
or
or
or
or
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about
about
about
about
about
about
about
about

00000000

.041355
.042383
.023013
.041002
.042250
.0217056
.025642
.026176

volts
volts
volts
volts
volts
volts
volts
volts




